commit
fea9f00597
|
@ -1,14 +1,38 @@
|
|||
APIs Console Project Setup:
|
||||
------------
|
||||
If you have not yet, you must set your APIs Console project to enable Prediction
|
||||
API and Google Storage. Go to APIs Console https://code.google.com/apis/console/
|
||||
and select the project you want to use. Next, go to Services, and enable both
|
||||
Prediction API and Google Storage. You may also need to enable Billing (Billing)
|
||||
in the left menu.
|
||||
|
||||
|
||||
Data Setup:
|
||||
----------
|
||||
Before you can run the prediction sample prediction.rb, you must load some csv
|
||||
formatted data into Google Storage. You can do this by running setup.sh with a
|
||||
bucket/object name of your choice. You must first create the bucket you want to
|
||||
use. This can be done with the gsutil function or via the web UI (Storage
|
||||
Access) in the Google APIs Console. i.e.:
|
||||
formatted data into Google Storage.
|
||||
|
||||
1 - You must first create the bucket you want to use. This can be done
|
||||
with the gsutil function or via the web UI (Storage Access) in the Google
|
||||
APIs Console. i.e.
|
||||
# gsutil mb gs://BUCKET
|
||||
|
||||
OR
|
||||
|
||||
Go to APIs Console -> Storage Access (on left) and the Google Storage Manager,
|
||||
and create your bucket there.
|
||||
|
||||
2 - We now load the data you want to use to Google Storage. We have supplied a
|
||||
basic language identification dataset in the sample for testing.
|
||||
|
||||
# chmod 744 setup.sh
|
||||
# ./setup.sh BUCKET/OBJECT
|
||||
Note you need gsutil in your path for this to work.
|
||||
|
||||
If you have your own dataset, you can do this manually as well.
|
||||
gsutil cp your_dataset.csv gs://BUCKET/your_dataset.csv
|
||||
|
||||
|
||||
In the script, you must then modify the datafile string. This must correspond with the
|
||||
bucket/object of your dataset (if you are using your own dataset). We have
|
||||
provided a setup.sh which will upload some basic sample data. The section is
|
||||
|
@ -28,7 +52,7 @@ API. You can also set it up so the user can grant access.
|
|||
First, run the google-api script to generate access and refresh tokens. Ex.
|
||||
|
||||
# cd google-api-ruby-client
|
||||
# ruby-1.9.2-p290 bin/google-api oauth-2-login --scope=https://www.googleapis.com/auth/prediction --client-id=NUMBER.apps.googleusercontent.com --client-secret=CLIENT_SECRET
|
||||
# ruby bin/google-api oauth-2-login --scope=https://www.googleapis.com/auth/prediction --client-id=NUMBER.apps.googleusercontent.com --client-secret=CLIENT_SECRET
|
||||
|
||||
Fill in your client-id and client-secret from the API Access page. You will
|
||||
probably have to set a redirect URI in your client ID
|
||||
|
@ -46,6 +70,25 @@ you are loading it as a yaml, ensure you rename/move the file, as the
|
|||
move the .google-api.yaml file to the sample directory.
|
||||
|
||||
|
||||
Usage :
|
||||
-------
|
||||
At this, point, you should have
|
||||
- Enabled your APIs Console account
|
||||
- Created a storage bucket, if required
|
||||
- Uploaded some data to Google Storage
|
||||
- Modified the script to point the 'datafile' variable to the BUCKET/OBJECT name
|
||||
- Modified the script to put your credentials in, either in the code or by
|
||||
loading the generated .yaml file
|
||||
|
||||
We can now run the service!
|
||||
# ruby prediction.rb
|
||||
|
||||
This should start a service on http://localhost:4567. When you hit the service,
|
||||
your ruby logs should show the Prediction API calls, and print the prediction
|
||||
output in the debug.
|
||||
|
||||
|
||||
|
||||
This sample currently does not cover some newer features of Prediction API such
|
||||
as streaming training, hosted models or class weights. If there are any
|
||||
questions or suggestions to improve the script please email us at
|
||||
|
|
|
@ -6,7 +6,6 @@
|
|||
# Original Author:: Bob Aman, Winton Davies, Robert Kaplow
|
||||
# Maintainer:: Robert Kaplow (mailto:rkaplow@google.com)
|
||||
|
||||
$:.unshift('lib')
|
||||
require 'rubygems'
|
||||
require 'sinatra'
|
||||
require 'datamapper'
|
||||
|
@ -61,7 +60,7 @@ before do
|
|||
@client.authorization.redirect_uri = to('/oauth2callback')
|
||||
|
||||
# Workaround for now as expires_in may be nil, but when converted to int it becomes 0.
|
||||
@client.authorization.expires_in = Time.now + 1800 if @client.authorization.expires_in.to_i == 0
|
||||
@client.authorization.expires_in = 1800 if @client.authorization.expires_in.to_i == 0
|
||||
|
||||
if session[:token_id]
|
||||
# Load the access token here if it's available
|
||||
|
@ -109,6 +108,7 @@ get '/' do
|
|||
# Do a prediction.
|
||||
# FILL IN DESIRED INPUT:
|
||||
# -------------------------------------------------------------------------------
|
||||
# Note, the input features should match the features of the dataset.
|
||||
prediction,score = get_prediction(datafile, ["Alice noticed with some surprise."])
|
||||
# -------------------------------------------------------------------------------
|
||||
|
||||
|
@ -127,10 +127,11 @@ end
|
|||
def train(datafile)
|
||||
input = "{\"id\" : \"#{datafile}\"}"
|
||||
puts "training input: #{input}"
|
||||
status, headers, body = @client.execute(@prediction.training.insert,
|
||||
{},
|
||||
input,
|
||||
{'Content-Type' => 'application/json'})
|
||||
result = @client.execute(:api_method => @prediction.training.insert,
|
||||
:merged_body => input,
|
||||
:headers => {'Content-Type' => 'application/json'}
|
||||
)
|
||||
status, headers, body = result.response
|
||||
end
|
||||
|
||||
##
|
||||
|
@ -141,8 +142,9 @@ end
|
|||
# then the correct string is "bucket/object"
|
||||
# @return [Integer] status The HTTP status code of the training job.
|
||||
def get_training_status(datafile)
|
||||
status, headers, body = @client.execute(@prediction.training.get,
|
||||
{'data' => datafile})
|
||||
result = @client.execute(:api_method => @prediction.training.get,
|
||||
:parameters => {'data' => datafile})
|
||||
status, headers, body = result.response
|
||||
return status
|
||||
end
|
||||
|
||||
|
@ -157,11 +159,14 @@ end
|
|||
|
||||
def is_done?(datafile)
|
||||
status = get_training_status(datafile)
|
||||
while true do
|
||||
# We use an exponential backoff approach here.
|
||||
test_counter = 0
|
||||
while test_counter < 10 do
|
||||
puts "Attempting to check model #{datafile} - Status: #{status} "
|
||||
return true if status == 200
|
||||
sleep 10
|
||||
sleep 5 * (test_counter + 1)
|
||||
status = get_training_status(datafile)
|
||||
test_counter += 1
|
||||
end
|
||||
return false
|
||||
end
|
||||
|
@ -184,12 +189,15 @@ def get_prediction(datafile,input_features)
|
|||
# We take the input features and put it in the right input (json) format.
|
||||
input="{\"input\" : { \"csvInstance\" : #{input_features}}}"
|
||||
puts "Prediction Input: #{input}"
|
||||
status, headers, body = @client.execute(@prediction.training.predict,
|
||||
{'data' => datafile},
|
||||
input,
|
||||
{'Content-Type' => 'application/json'})
|
||||
prediction_data = JSON.parse(body[0])
|
||||
|
||||
result = @client.execute(:api_method => @prediction.training.predict,
|
||||
:parameters => {'data' => datafile},
|
||||
:merged_body => input,
|
||||
:headers => {'Content-Type' => 'application/json'})
|
||||
status, headers, body = result.response
|
||||
prediction_data = result.data
|
||||
puts status
|
||||
puts body
|
||||
puts prediction_data
|
||||
# Categorical
|
||||
if prediction_data["outputLabel"] != nil
|
||||
# Pull the most likely label.
|
||||
|
|
Loading…
Reference in New Issue