# Copyright 2015 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. require 'date' require 'google/apis/core/base_service' require 'google/apis/core/json_representation' require 'google/apis/core/hashable' require 'google/apis/errors' module Google module Apis module MlV1 # Message that represents an arbitrary HTTP body. It should only be used for # payload formats that can't be represented as JSON, such as raw binary or an # HTML page. This message can be used both in streaming and non-streaming API # methods in the request as well as the response. It can be used as a top-level # request field, which is convenient if one wants to extract parameters from # either the URL or HTTP template into the request fields and also want access # to the raw HTTP body. Example: message GetResourceRequest ` // A unique # request id. string request_id = 1; // The raw HTTP body is bound to this field. # google.api.HttpBody http_body = 2; ` service ResourceService ` rpc # GetResource(GetResourceRequest) returns (google.api.HttpBody); rpc # UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty); ` Example # with streaming methods: service CaldavService ` rpc GetCalendar(stream google. # api.HttpBody) returns (stream google.api.HttpBody); rpc UpdateCalendar(stream # google.api.HttpBody) returns (stream google.api.HttpBody); ` Use of this type # only changes how the request and response bodies are handled, all other # features will continue to work unchanged. class GoogleApiHttpBody include Google::Apis::Core::Hashable # The HTTP Content-Type header value specifying the content type of the body. # Corresponds to the JSON property `contentType` # @return [String] attr_accessor :content_type # The HTTP request/response body as raw binary. # Corresponds to the JSON property `data` # NOTE: Values are automatically base64 encoded/decoded in the client library. # @return [String] attr_accessor :data # Application specific response metadata. Must be set in the first response for # streaming APIs. # Corresponds to the JSON property `extensions` # @return [Array>] attr_accessor :extensions def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @content_type = args[:content_type] if args.key?(:content_type) @data = args[:data] if args.key?(:data) @extensions = args[:extensions] if args.key?(:extensions) end end # class GoogleCloudMlV1AutomatedStoppingConfigDecayCurveAutomatedStoppingConfig include Google::Apis::Core::Hashable # If true, measurement.elapsed_time is used as the x-axis of each Trials Decay # Curve. Otherwise, Measurement.steps will be used as the x-axis. # Corresponds to the JSON property `useElapsedTime` # @return [Boolean] attr_accessor :use_elapsed_time alias_method :use_elapsed_time?, :use_elapsed_time def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @use_elapsed_time = args[:use_elapsed_time] if args.key?(:use_elapsed_time) end end # The median automated stopping rule stops a pending trial if the trial's best # objective_value is strictly below the median 'performance' of all completed # trials reported up to the trial's last measurement. Currently, 'performance' # refers to the running average of the objective values reported by the trial in # each measurement. class GoogleCloudMlV1AutomatedStoppingConfigMedianAutomatedStoppingConfig include Google::Apis::Core::Hashable # If true, the median automated stopping rule applies to measurement. # use_elapsed_time, which means the elapsed_time field of the current trial's # latest measurement is used to compute the median objective value for each # completed trial. # Corresponds to the JSON property `useElapsedTime` # @return [Boolean] attr_accessor :use_elapsed_time alias_method :use_elapsed_time?, :use_elapsed_time def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @use_elapsed_time = args[:use_elapsed_time] if args.key?(:use_elapsed_time) end end # An observed value of a metric. class GoogleCloudMlV1HyperparameterOutputHyperparameterMetric include Google::Apis::Core::Hashable # The objective value at this training step. # Corresponds to the JSON property `objectiveValue` # @return [Float] attr_accessor :objective_value # The global training step for this metric. # Corresponds to the JSON property `trainingStep` # @return [Fixnum] attr_accessor :training_step def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @objective_value = args[:objective_value] if args.key?(:objective_value) @training_step = args[:training_step] if args.key?(:training_step) end end # A message representing a metric in the measurement. class GoogleCloudMlV1MeasurementMetric include Google::Apis::Core::Hashable # Required. Metric name. # Corresponds to the JSON property `metric` # @return [String] attr_accessor :metric # Required. The value for this metric. # Corresponds to the JSON property `value` # @return [Float] attr_accessor :value def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @metric = args[:metric] if args.key?(:metric) @value = args[:value] if args.key?(:value) end end # class GoogleCloudMlV1StudyConfigParameterSpecCategoricalValueSpec include Google::Apis::Core::Hashable # Must be specified if type is `CATEGORICAL`. The list of possible categories. # Corresponds to the JSON property `values` # @return [Array] attr_accessor :values def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @values = args[:values] if args.key?(:values) end end # class GoogleCloudMlV1StudyConfigParameterSpecDiscreteValueSpec include Google::Apis::Core::Hashable # Must be specified if type is `DISCRETE`. A list of feasible points. The list # should be in strictly increasing order. For instance, this parameter might # have possible settings of 1.5, 2.5, and 4.0. This list should not contain more # than 1,000 values. # Corresponds to the JSON property `values` # @return [Array] attr_accessor :values def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @values = args[:values] if args.key?(:values) end end # class GoogleCloudMlV1StudyConfigParameterSpecDoubleValueSpec include Google::Apis::Core::Hashable # Must be specified if type is `DOUBLE`. Maximum value of the parameter. # Corresponds to the JSON property `maxValue` # @return [Float] attr_accessor :max_value # Must be specified if type is `DOUBLE`. Minimum value of the parameter. # Corresponds to the JSON property `minValue` # @return [Float] attr_accessor :min_value def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @max_value = args[:max_value] if args.key?(:max_value) @min_value = args[:min_value] if args.key?(:min_value) end end # class GoogleCloudMlV1StudyConfigParameterSpecIntegerValueSpec include Google::Apis::Core::Hashable # Must be specified if type is `INTEGER`. Maximum value of the parameter. # Corresponds to the JSON property `maxValue` # @return [Fixnum] attr_accessor :max_value # Must be specified if type is `INTEGER`. Minimum value of the parameter. # Corresponds to the JSON property `minValue` # @return [Fixnum] attr_accessor :min_value def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @max_value = args[:max_value] if args.key?(:max_value) @min_value = args[:min_value] if args.key?(:min_value) end end # Represents the spec to match categorical values from parent parameter. class GoogleCloudMlV1StudyConfigParameterSpecMatchingParentCategoricalValueSpec include Google::Apis::Core::Hashable # Matches values of the parent parameter with type 'CATEGORICAL'. All values # must exist in `categorical_value_spec` of parent parameter. # Corresponds to the JSON property `values` # @return [Array] attr_accessor :values def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @values = args[:values] if args.key?(:values) end end # Represents the spec to match discrete values from parent parameter. class GoogleCloudMlV1StudyConfigParameterSpecMatchingParentDiscreteValueSpec include Google::Apis::Core::Hashable # Matches values of the parent parameter with type 'DISCRETE'. All values must # exist in `discrete_value_spec` of parent parameter. # Corresponds to the JSON property `values` # @return [Array] attr_accessor :values def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @values = args[:values] if args.key?(:values) end end # Represents the spec to match integer values from parent parameter. class GoogleCloudMlV1StudyConfigParameterSpecMatchingParentIntValueSpec include Google::Apis::Core::Hashable # Matches values of the parent parameter with type 'INTEGER'. All values must # lie in `integer_value_spec` of parent parameter. # Corresponds to the JSON property `values` # @return [Array] attr_accessor :values def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @values = args[:values] if args.key?(:values) end end # Represents a metric to optimize. class GoogleCloudMlV1StudyConfigMetricSpec include Google::Apis::Core::Hashable # Required. The optimization goal of the metric. # Corresponds to the JSON property `goal` # @return [String] attr_accessor :goal # Required. The name of the metric. # Corresponds to the JSON property `metric` # @return [String] attr_accessor :metric def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @goal = args[:goal] if args.key?(:goal) @metric = args[:metric] if args.key?(:metric) end end # Represents a single parameter to optimize. class GoogleCloudMlV1StudyConfigParameterSpec include Google::Apis::Core::Hashable # The value spec for a 'CATEGORICAL' parameter. # Corresponds to the JSON property `categoricalValueSpec` # @return [Google::Apis::MlV1::GoogleCloudMlV1StudyConfigParameterSpecCategoricalValueSpec] attr_accessor :categorical_value_spec # A child node is active if the parameter's value matches the child node's # matching_parent_values. If two items in child_parameter_specs have the same # name, they must have disjoint matching_parent_values. # Corresponds to the JSON property `childParameterSpecs` # @return [Array] attr_accessor :child_parameter_specs # The value spec for a 'DISCRETE' parameter. # Corresponds to the JSON property `discreteValueSpec` # @return [Google::Apis::MlV1::GoogleCloudMlV1StudyConfigParameterSpecDiscreteValueSpec] attr_accessor :discrete_value_spec # The value spec for a 'DOUBLE' parameter. # Corresponds to the JSON property `doubleValueSpec` # @return [Google::Apis::MlV1::GoogleCloudMlV1StudyConfigParameterSpecDoubleValueSpec] attr_accessor :double_value_spec # The value spec for an 'INTEGER' parameter. # Corresponds to the JSON property `integerValueSpec` # @return [Google::Apis::MlV1::GoogleCloudMlV1StudyConfigParameterSpecIntegerValueSpec] attr_accessor :integer_value_spec # Required. The parameter name must be unique amongst all ParameterSpecs. # Corresponds to the JSON property `parameter` # @return [String] attr_accessor :parameter # Represents the spec to match categorical values from parent parameter. # Corresponds to the JSON property `parentCategoricalValues` # @return [Google::Apis::MlV1::GoogleCloudMlV1StudyConfigParameterSpecMatchingParentCategoricalValueSpec] attr_accessor :parent_categorical_values # Represents the spec to match discrete values from parent parameter. # Corresponds to the JSON property `parentDiscreteValues` # @return [Google::Apis::MlV1::GoogleCloudMlV1StudyConfigParameterSpecMatchingParentDiscreteValueSpec] attr_accessor :parent_discrete_values # Represents the spec to match integer values from parent parameter. # Corresponds to the JSON property `parentIntValues` # @return [Google::Apis::MlV1::GoogleCloudMlV1StudyConfigParameterSpecMatchingParentIntValueSpec] attr_accessor :parent_int_values # How the parameter should be scaled. Leave unset for categorical parameters. # Corresponds to the JSON property `scaleType` # @return [String] attr_accessor :scale_type # Required. The type of the parameter. # Corresponds to the JSON property `type` # @return [String] attr_accessor :type def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @categorical_value_spec = args[:categorical_value_spec] if args.key?(:categorical_value_spec) @child_parameter_specs = args[:child_parameter_specs] if args.key?(:child_parameter_specs) @discrete_value_spec = args[:discrete_value_spec] if args.key?(:discrete_value_spec) @double_value_spec = args[:double_value_spec] if args.key?(:double_value_spec) @integer_value_spec = args[:integer_value_spec] if args.key?(:integer_value_spec) @parameter = args[:parameter] if args.key?(:parameter) @parent_categorical_values = args[:parent_categorical_values] if args.key?(:parent_categorical_values) @parent_discrete_values = args[:parent_discrete_values] if args.key?(:parent_discrete_values) @parent_int_values = args[:parent_int_values] if args.key?(:parent_int_values) @scale_type = args[:scale_type] if args.key?(:scale_type) @type = args[:type] if args.key?(:type) end end # A message representing a parameter to be tuned. Contains the name of the # parameter and the suggested value to use for this trial. class GoogleCloudMlV1TrialParameter include Google::Apis::Core::Hashable # Must be set if ParameterType is DOUBLE or DISCRETE. # Corresponds to the JSON property `floatValue` # @return [Float] attr_accessor :float_value # Must be set if ParameterType is INTEGER # Corresponds to the JSON property `intValue` # @return [Fixnum] attr_accessor :int_value # The name of the parameter. # Corresponds to the JSON property `parameter` # @return [String] attr_accessor :parameter # Must be set if ParameterTypeis CATEGORICAL # Corresponds to the JSON property `stringValue` # @return [String] attr_accessor :string_value def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @float_value = args[:float_value] if args.key?(:float_value) @int_value = args[:int_value] if args.key?(:int_value) @parameter = args[:parameter] if args.key?(:parameter) @string_value = args[:string_value] if args.key?(:string_value) end end # Represents a hardware accelerator request config. Note that the # AcceleratorConfig can be used in both Jobs and Versions. Learn more about [ # accelerators for training](/ml-engine/docs/using-gpus) and [accelerators for # online prediction](/ml-engine/docs/machine-types-online-prediction#gpus). class GoogleCloudMlV1AcceleratorConfig include Google::Apis::Core::Hashable # The number of accelerators to attach to each machine running the job. # Corresponds to the JSON property `count` # @return [Fixnum] attr_accessor :count # The type of accelerator to use. # Corresponds to the JSON property `type` # @return [String] attr_accessor :type def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @count = args[:count] if args.key?(:count) @type = args[:type] if args.key?(:type) end end # The request message for the AddTrialMeasurement service method. class GoogleCloudMlV1AddTrialMeasurementRequest include Google::Apis::Core::Hashable # A message representing a measurement. # Corresponds to the JSON property `measurement` # @return [Google::Apis::MlV1::GoogleCloudMlV1Measurement] attr_accessor :measurement def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @measurement = args[:measurement] if args.key?(:measurement) end end # Options for automatically scaling a model. class GoogleCloudMlV1AutoScaling include Google::Apis::Core::Hashable # Optional. The minimum number of nodes to allocate for this model. These nodes # are always up, starting from the time the model is deployed. Therefore, the # cost of operating this model will be at least `rate` * `min_nodes` * number of # hours since last billing cycle, where `rate` is the cost per node-hour as # documented in the [pricing guide](/ml-engine/docs/pricing), even if no # predictions are performed. There is additional cost for each prediction # performed. Unlike manual scaling, if the load gets too heavy for the nodes # that are up, the service will automatically add nodes to handle the increased # load as well as scale back as traffic drops, always maintaining at least ` # min_nodes`. You will be charged for the time in which additional nodes are # used. If `min_nodes` is not specified and AutoScaling is used with a [legacy ( # MLS1) machine type](/ml-engine/docs/machine-types-online-prediction), ` # min_nodes` defaults to 0, in which case, when traffic to a model stops (and # after a cool-down period), nodes will be shut down and no charges will be # incurred until traffic to the model resumes. If `min_nodes` is not specified # and AutoScaling is used with a [Compute Engine (N1) machine type](/ml-engine/ # docs/machine-types-online-prediction), `min_nodes` defaults to 1. `min_nodes` # must be at least 1 for use with a Compute Engine machine type. Note that you # cannot use AutoScaling if your version uses [GPUs](#Version.FIELDS. # accelerator_config). Instead, you must use ManualScaling. You can set ` # min_nodes` when creating the model version, and you can also update `min_nodes` # for an existing version: update_body.json: ` 'autoScaling': ` 'minNodes': 5 ` # ` HTTP request: PATCH https://ml.googleapis.com/v1/`name=projects/*/models/*/ # versions/*`?update_mask=autoScaling.minNodes -d @./update_body.json # Corresponds to the JSON property `minNodes` # @return [Fixnum] attr_accessor :min_nodes def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @min_nodes = args[:min_nodes] if args.key?(:min_nodes) end end # Configuration for Automated Early Stopping of Trials. If no # implementation_config is set, automated early stopping will not be run. class GoogleCloudMlV1AutomatedStoppingConfig include Google::Apis::Core::Hashable # # Corresponds to the JSON property `decayCurveStoppingConfig` # @return [Google::Apis::MlV1::GoogleCloudMlV1AutomatedStoppingConfigDecayCurveAutomatedStoppingConfig] attr_accessor :decay_curve_stopping_config # The median automated stopping rule stops a pending trial if the trial's best # objective_value is strictly below the median 'performance' of all completed # trials reported up to the trial's last measurement. Currently, 'performance' # refers to the running average of the objective values reported by the trial in # each measurement. # Corresponds to the JSON property `medianAutomatedStoppingConfig` # @return [Google::Apis::MlV1::GoogleCloudMlV1AutomatedStoppingConfigMedianAutomatedStoppingConfig] attr_accessor :median_automated_stopping_config def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @decay_curve_stopping_config = args[:decay_curve_stopping_config] if args.key?(:decay_curve_stopping_config) @median_automated_stopping_config = args[:median_automated_stopping_config] if args.key?(:median_automated_stopping_config) end end # Represents output related to a built-in algorithm Job. class GoogleCloudMlV1BuiltInAlgorithmOutput include Google::Apis::Core::Hashable # Framework on which the built-in algorithm was trained. # Corresponds to the JSON property `framework` # @return [String] attr_accessor :framework # The Cloud Storage path to the `model/` directory where the training job saves # the trained model. Only set for successful jobs that don't use hyperparameter # tuning. # Corresponds to the JSON property `modelPath` # @return [String] attr_accessor :model_path # Python version on which the built-in algorithm was trained. # Corresponds to the JSON property `pythonVersion` # @return [String] attr_accessor :python_version # AI Platform runtime version on which the built-in algorithm was trained. # Corresponds to the JSON property `runtimeVersion` # @return [String] attr_accessor :runtime_version def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @framework = args[:framework] if args.key?(:framework) @model_path = args[:model_path] if args.key?(:model_path) @python_version = args[:python_version] if args.key?(:python_version) @runtime_version = args[:runtime_version] if args.key?(:runtime_version) end end # Request message for the CancelJob method. class GoogleCloudMlV1CancelJobRequest include Google::Apis::Core::Hashable def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) end end # class GoogleCloudMlV1Capability include Google::Apis::Core::Hashable # Available accelerators for the capability. # Corresponds to the JSON property `availableAccelerators` # @return [Array] attr_accessor :available_accelerators # # Corresponds to the JSON property `type` # @return [String] attr_accessor :type def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @available_accelerators = args[:available_accelerators] if args.key?(:available_accelerators) @type = args[:type] if args.key?(:type) end end # This message will be placed in the metadata field of a google.longrunning. # Operation associated with a CheckTrialEarlyStoppingState request. class GoogleCloudMlV1CheckTrialEarlyStoppingStateMetatdata include Google::Apis::Core::Hashable # The time at which the operation was submitted. # Corresponds to the JSON property `createTime` # @return [String] attr_accessor :create_time # The name of the study that the trial belongs to. # Corresponds to the JSON property `study` # @return [String] attr_accessor :study # The trial name. # Corresponds to the JSON property `trial` # @return [String] attr_accessor :trial def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @create_time = args[:create_time] if args.key?(:create_time) @study = args[:study] if args.key?(:study) @trial = args[:trial] if args.key?(:trial) end end # The request message for the CheckTrialEarlyStoppingState service method. class GoogleCloudMlV1CheckTrialEarlyStoppingStateRequest include Google::Apis::Core::Hashable def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) end end # The message will be placed in the response field of a completed google. # longrunning.Operation associated with a CheckTrialEarlyStoppingState request. class GoogleCloudMlV1CheckTrialEarlyStoppingStateResponse include Google::Apis::Core::Hashable # The time at which operation processing completed. # Corresponds to the JSON property `endTime` # @return [String] attr_accessor :end_time # True if the Trial should stop. # Corresponds to the JSON property `shouldStop` # @return [Boolean] attr_accessor :should_stop alias_method :should_stop?, :should_stop # The time at which the operation was started. # Corresponds to the JSON property `startTime` # @return [String] attr_accessor :start_time def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @end_time = args[:end_time] if args.key?(:end_time) @should_stop = args[:should_stop] if args.key?(:should_stop) @start_time = args[:start_time] if args.key?(:start_time) end end # The request message for the CompleteTrial service method. class GoogleCloudMlV1CompleteTrialRequest include Google::Apis::Core::Hashable # A message representing a measurement. # Corresponds to the JSON property `finalMeasurement` # @return [Google::Apis::MlV1::GoogleCloudMlV1Measurement] attr_accessor :final_measurement # Optional. A human readable reason why the trial was infeasible. This should # only be provided if `trial_infeasible` is true. # Corresponds to the JSON property `infeasibleReason` # @return [String] attr_accessor :infeasible_reason # Optional. True if the trial cannot be run with the given Parameter, and # final_measurement will be ignored. # Corresponds to the JSON property `trialInfeasible` # @return [Boolean] attr_accessor :trial_infeasible alias_method :trial_infeasible?, :trial_infeasible def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @final_measurement = args[:final_measurement] if args.key?(:final_measurement) @infeasible_reason = args[:infeasible_reason] if args.key?(:infeasible_reason) @trial_infeasible = args[:trial_infeasible] if args.key?(:trial_infeasible) end end # class GoogleCloudMlV1Config include Google::Apis::Core::Hashable # The service account Cloud ML uses to run on TPU node. # Corresponds to the JSON property `tpuServiceAccount` # @return [String] attr_accessor :tpu_service_account def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @tpu_service_account = args[:tpu_service_account] if args.key?(:tpu_service_account) end end # Represents a custom encryption key configuration that can be applied to a # resource. class GoogleCloudMlV1EncryptionConfig include Google::Apis::Core::Hashable # The Cloud KMS resource identifier of the customer-managed encryption key used # to protect a resource, such as a training job. It has the following format: ` # projects/`PROJECT_ID`/locations/`REGION`/keyRings/`KEY_RING_NAME`/cryptoKeys/` # KEY_NAME`` # Corresponds to the JSON property `kmsKeyName` # @return [String] attr_accessor :kms_key_name def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @kms_key_name = args[:kms_key_name] if args.key?(:kms_key_name) end end # EndpointMap is used to provide paths for predict/explain/healthcheck to # customers. It's an output only field in the version proto which can be only # set on the server side. Public endpoints follow the format specified on the # user facing doc, and private endpoints are customized for each privately # deploymed model/version. class GoogleCloudMlV1EndpointMap include Google::Apis::Core::Hashable # Optional. Http(s) path to send explain requests. # Corresponds to the JSON property `explain` # @return [String] attr_accessor :explain # Http(s) path to send health check requests. # Corresponds to the JSON property `health` # @return [String] attr_accessor :health # Http(s) path to send prediction requests. # Corresponds to the JSON property `predict` # @return [String] attr_accessor :predict def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @explain = args[:explain] if args.key?(:explain) @health = args[:health] if args.key?(:health) @predict = args[:predict] if args.key?(:predict) end end # Request for explanations to be issued against a trained model. class GoogleCloudMlV1ExplainRequest include Google::Apis::Core::Hashable # Message that represents an arbitrary HTTP body. It should only be used for # payload formats that can't be represented as JSON, such as raw binary or an # HTML page. This message can be used both in streaming and non-streaming API # methods in the request as well as the response. It can be used as a top-level # request field, which is convenient if one wants to extract parameters from # either the URL or HTTP template into the request fields and also want access # to the raw HTTP body. Example: message GetResourceRequest ` // A unique # request id. string request_id = 1; // The raw HTTP body is bound to this field. # google.api.HttpBody http_body = 2; ` service ResourceService ` rpc # GetResource(GetResourceRequest) returns (google.api.HttpBody); rpc # UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty); ` Example # with streaming methods: service CaldavService ` rpc GetCalendar(stream google. # api.HttpBody) returns (stream google.api.HttpBody); rpc UpdateCalendar(stream # google.api.HttpBody) returns (stream google.api.HttpBody); ` Use of this type # only changes how the request and response bodies are handled, all other # features will continue to work unchanged. # Corresponds to the JSON property `httpBody` # @return [Google::Apis::MlV1::GoogleApiHttpBody] attr_accessor :http_body def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @http_body = args[:http_body] if args.key?(:http_body) end end # Message holding configuration options for explaining model predictions. There # are two feature attribution methods supported for TensorFlow models: # integrated gradients and sampled Shapley. [Learn more about feature # attributions.](/ai-platform/prediction/docs/ai-explanations/overview) class GoogleCloudMlV1ExplanationConfig include Google::Apis::Core::Hashable # Attributes credit by computing the Aumann-Shapley value taking advantage of # the model's fully differentiable structure. Refer to this paper for more # details: https://arxiv.org/abs/1703.01365 # Corresponds to the JSON property `integratedGradientsAttribution` # @return [Google::Apis::MlV1::GoogleCloudMlV1IntegratedGradientsAttribution] attr_accessor :integrated_gradients_attribution # An attribution method that approximates Shapley values for features that # contribute to the label being predicted. A sampling strategy is used to # approximate the value rather than considering all subsets of features. # Corresponds to the JSON property `sampledShapleyAttribution` # @return [Google::Apis::MlV1::GoogleCloudMlV1SampledShapleyAttribution] attr_accessor :sampled_shapley_attribution # Attributes credit by computing the XRAI taking advantage of the model's fully # differentiable structure. Refer to this paper for more details: https://arxiv. # org/abs/1906.02825 Currently only implemented for models with natural image # inputs. # Corresponds to the JSON property `xraiAttribution` # @return [Google::Apis::MlV1::GoogleCloudMlV1XraiAttribution] attr_accessor :xrai_attribution def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @integrated_gradients_attribution = args[:integrated_gradients_attribution] if args.key?(:integrated_gradients_attribution) @sampled_shapley_attribution = args[:sampled_shapley_attribution] if args.key?(:sampled_shapley_attribution) @xrai_attribution = args[:xrai_attribution] if args.key?(:xrai_attribution) end end # Returns service account information associated with a project. class GoogleCloudMlV1GetConfigResponse include Google::Apis::Core::Hashable # # Corresponds to the JSON property `config` # @return [Google::Apis::MlV1::GoogleCloudMlV1Config] attr_accessor :config # The service account Cloud ML uses to access resources in the project. # Corresponds to the JSON property `serviceAccount` # @return [String] attr_accessor :service_account # The project number for `service_account`. # Corresponds to the JSON property `serviceAccountProject` # @return [Fixnum] attr_accessor :service_account_project def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @config = args[:config] if args.key?(:config) @service_account = args[:service_account] if args.key?(:service_account) @service_account_project = args[:service_account_project] if args.key?(:service_account_project) end end # Represents the result of a single hyperparameter tuning trial from a training # job. The TrainingOutput object that is returned on successful completion of a # training job with hyperparameter tuning includes a list of # HyperparameterOutput objects, one for each successful trial. class GoogleCloudMlV1HyperparameterOutput include Google::Apis::Core::Hashable # All recorded object metrics for this trial. This field is not currently # populated. # Corresponds to the JSON property `allMetrics` # @return [Array] attr_accessor :all_metrics # Represents output related to a built-in algorithm Job. # Corresponds to the JSON property `builtInAlgorithmOutput` # @return [Google::Apis::MlV1::GoogleCloudMlV1BuiltInAlgorithmOutput] attr_accessor :built_in_algorithm_output # Output only. End time for the trial. # Corresponds to the JSON property `endTime` # @return [String] attr_accessor :end_time # An observed value of a metric. # Corresponds to the JSON property `finalMetric` # @return [Google::Apis::MlV1::GoogleCloudMlV1HyperparameterOutputHyperparameterMetric] attr_accessor :final_metric # The hyperparameters given to this trial. # Corresponds to the JSON property `hyperparameters` # @return [Hash] attr_accessor :hyperparameters # True if the trial is stopped early. # Corresponds to the JSON property `isTrialStoppedEarly` # @return [Boolean] attr_accessor :is_trial_stopped_early alias_method :is_trial_stopped_early?, :is_trial_stopped_early # Output only. Start time for the trial. # Corresponds to the JSON property `startTime` # @return [String] attr_accessor :start_time # Output only. The detailed state of the trial. # Corresponds to the JSON property `state` # @return [String] attr_accessor :state # The trial id for these results. # Corresponds to the JSON property `trialId` # @return [String] attr_accessor :trial_id def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @all_metrics = args[:all_metrics] if args.key?(:all_metrics) @built_in_algorithm_output = args[:built_in_algorithm_output] if args.key?(:built_in_algorithm_output) @end_time = args[:end_time] if args.key?(:end_time) @final_metric = args[:final_metric] if args.key?(:final_metric) @hyperparameters = args[:hyperparameters] if args.key?(:hyperparameters) @is_trial_stopped_early = args[:is_trial_stopped_early] if args.key?(:is_trial_stopped_early) @start_time = args[:start_time] if args.key?(:start_time) @state = args[:state] if args.key?(:state) @trial_id = args[:trial_id] if args.key?(:trial_id) end end # Represents a set of hyperparameters to optimize. class GoogleCloudMlV1HyperparameterSpec include Google::Apis::Core::Hashable # Optional. The search algorithm specified for the hyperparameter tuning job. # Uses the default AI Platform hyperparameter tuning algorithm if unspecified. # Corresponds to the JSON property `algorithm` # @return [String] attr_accessor :algorithm # Optional. Indicates if the hyperparameter tuning job enables auto trial early # stopping. # Corresponds to the JSON property `enableTrialEarlyStopping` # @return [Boolean] attr_accessor :enable_trial_early_stopping alias_method :enable_trial_early_stopping?, :enable_trial_early_stopping # Required. The type of goal to use for tuning. Available types are `MAXIMIZE` # and `MINIMIZE`. Defaults to `MAXIMIZE`. # Corresponds to the JSON property `goal` # @return [String] attr_accessor :goal # Optional. The TensorFlow summary tag name to use for optimizing trials. For # current versions of TensorFlow, this tag name should exactly match what is # shown in TensorBoard, including all scopes. For versions of TensorFlow prior # to 0.12, this should be only the tag passed to tf.Summary. By default, " # training/hptuning/metric" will be used. # Corresponds to the JSON property `hyperparameterMetricTag` # @return [String] attr_accessor :hyperparameter_metric_tag # Optional. The number of failed trials that need to be seen before failing the # hyperparameter tuning job. You can specify this field to override the default # failing criteria for AI Platform hyperparameter tuning jobs. Defaults to zero, # which means the service decides when a hyperparameter job should fail. # Corresponds to the JSON property `maxFailedTrials` # @return [Fixnum] attr_accessor :max_failed_trials # Optional. The number of training trials to run concurrently. You can reduce # the time it takes to perform hyperparameter tuning by adding trials in # parallel. However, each trail only benefits from the information gained in # completed trials. That means that a trial does not get access to the results # of trials running at the same time, which could reduce the quality of the # overall optimization. Each trial will use the same scale tier and machine # types. Defaults to one. # Corresponds to the JSON property `maxParallelTrials` # @return [Fixnum] attr_accessor :max_parallel_trials # Optional. How many training trials should be attempted to optimize the # specified hyperparameters. Defaults to one. # Corresponds to the JSON property `maxTrials` # @return [Fixnum] attr_accessor :max_trials # Required. The set of parameters to tune. # Corresponds to the JSON property `params` # @return [Array] attr_accessor :params # Optional. The prior hyperparameter tuning job id that users hope to continue # with. The job id will be used to find the corresponding vizier study guid and # resume the study. # Corresponds to the JSON property `resumePreviousJobId` # @return [String] attr_accessor :resume_previous_job_id def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @algorithm = args[:algorithm] if args.key?(:algorithm) @enable_trial_early_stopping = args[:enable_trial_early_stopping] if args.key?(:enable_trial_early_stopping) @goal = args[:goal] if args.key?(:goal) @hyperparameter_metric_tag = args[:hyperparameter_metric_tag] if args.key?(:hyperparameter_metric_tag) @max_failed_trials = args[:max_failed_trials] if args.key?(:max_failed_trials) @max_parallel_trials = args[:max_parallel_trials] if args.key?(:max_parallel_trials) @max_trials = args[:max_trials] if args.key?(:max_trials) @params = args[:params] if args.key?(:params) @resume_previous_job_id = args[:resume_previous_job_id] if args.key?(:resume_previous_job_id) end end # Attributes credit by computing the Aumann-Shapley value taking advantage of # the model's fully differentiable structure. Refer to this paper for more # details: https://arxiv.org/abs/1703.01365 class GoogleCloudMlV1IntegratedGradientsAttribution include Google::Apis::Core::Hashable # Number of steps for approximating the path integral. A good value to start is # 50 and gradually increase until the sum to diff property is met within the # desired error range. # Corresponds to the JSON property `numIntegralSteps` # @return [Fixnum] attr_accessor :num_integral_steps def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @num_integral_steps = args[:num_integral_steps] if args.key?(:num_integral_steps) end end # Represents a training or prediction job. class GoogleCloudMlV1Job include Google::Apis::Core::Hashable # Output only. When the job was created. # Corresponds to the JSON property `createTime` # @return [String] attr_accessor :create_time # Output only. When the job processing was completed. # Corresponds to the JSON property `endTime` # @return [String] attr_accessor :end_time # Output only. The details of a failure or a cancellation. # Corresponds to the JSON property `errorMessage` # @return [String] attr_accessor :error_message # `etag` is used for optimistic concurrency control as a way to help prevent # simultaneous updates of a job from overwriting each other. It is strongly # suggested that systems make use of the `etag` in the read-modify-write cycle # to perform job updates in order to avoid race conditions: An `etag` is # returned in the response to `GetJob`, and systems are expected to put that # etag in the request to `UpdateJob` to ensure that their change will be applied # to the same version of the job. # Corresponds to the JSON property `etag` # NOTE: Values are automatically base64 encoded/decoded in the client library. # @return [String] attr_accessor :etag # Required. The user-specified id of the job. # Corresponds to the JSON property `jobId` # @return [String] attr_accessor :job_id # Optional. One or more labels that you can add, to organize your jobs. Each # label is a key-value pair, where both the key and the value are arbitrary # strings that you supply. For more information, see the documentation on using # labels. # Corresponds to the JSON property `labels` # @return [Hash] attr_accessor :labels # Represents input parameters for a prediction job. # Corresponds to the JSON property `predictionInput` # @return [Google::Apis::MlV1::GoogleCloudMlV1PredictionInput] attr_accessor :prediction_input # Represents results of a prediction job. # Corresponds to the JSON property `predictionOutput` # @return [Google::Apis::MlV1::GoogleCloudMlV1PredictionOutput] attr_accessor :prediction_output # Output only. When the job processing was started. # Corresponds to the JSON property `startTime` # @return [String] attr_accessor :start_time # Output only. The detailed state of a job. # Corresponds to the JSON property `state` # @return [String] attr_accessor :state # Represents input parameters for a training job. When using the gcloud command # to submit your training job, you can specify the input parameters as command- # line arguments and/or in a YAML configuration file referenced from the -- # config command-line argument. For details, see the guide to [submitting a # training job](/ai-platform/training/docs/training-jobs). # Corresponds to the JSON property `trainingInput` # @return [Google::Apis::MlV1::GoogleCloudMlV1TrainingInput] attr_accessor :training_input # Represents results of a training job. Output only. # Corresponds to the JSON property `trainingOutput` # @return [Google::Apis::MlV1::GoogleCloudMlV1TrainingOutput] attr_accessor :training_output def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @create_time = args[:create_time] if args.key?(:create_time) @end_time = args[:end_time] if args.key?(:end_time) @error_message = args[:error_message] if args.key?(:error_message) @etag = args[:etag] if args.key?(:etag) @job_id = args[:job_id] if args.key?(:job_id) @labels = args[:labels] if args.key?(:labels) @prediction_input = args[:prediction_input] if args.key?(:prediction_input) @prediction_output = args[:prediction_output] if args.key?(:prediction_output) @start_time = args[:start_time] if args.key?(:start_time) @state = args[:state] if args.key?(:state) @training_input = args[:training_input] if args.key?(:training_input) @training_output = args[:training_output] if args.key?(:training_output) end end # Response message for the ListJobs method. class GoogleCloudMlV1ListJobsResponse include Google::Apis::Core::Hashable # The list of jobs. # Corresponds to the JSON property `jobs` # @return [Array] attr_accessor :jobs # Optional. Pass this token as the `page_token` field of the request for a # subsequent call. # Corresponds to the JSON property `nextPageToken` # @return [String] attr_accessor :next_page_token def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @jobs = args[:jobs] if args.key?(:jobs) @next_page_token = args[:next_page_token] if args.key?(:next_page_token) end end # class GoogleCloudMlV1ListLocationsResponse include Google::Apis::Core::Hashable # Locations where at least one type of CMLE capability is available. # Corresponds to the JSON property `locations` # @return [Array] attr_accessor :locations # Optional. Pass this token as the `page_token` field of the request for a # subsequent call. # Corresponds to the JSON property `nextPageToken` # @return [String] attr_accessor :next_page_token def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @locations = args[:locations] if args.key?(:locations) @next_page_token = args[:next_page_token] if args.key?(:next_page_token) end end # Response message for the ListModels method. class GoogleCloudMlV1ListModelsResponse include Google::Apis::Core::Hashable # The list of models. # Corresponds to the JSON property `models` # @return [Array] attr_accessor :models # Optional. Pass this token as the `page_token` field of the request for a # subsequent call. # Corresponds to the JSON property `nextPageToken` # @return [String] attr_accessor :next_page_token def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @models = args[:models] if args.key?(:models) @next_page_token = args[:next_page_token] if args.key?(:next_page_token) end end # class GoogleCloudMlV1ListStudiesResponse include Google::Apis::Core::Hashable # The studies associated with the project. # Corresponds to the JSON property `studies` # @return [Array] attr_accessor :studies def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @studies = args[:studies] if args.key?(:studies) end end # The response message for the ListTrials method. class GoogleCloudMlV1ListTrialsResponse include Google::Apis::Core::Hashable # The trials associated with the study. # Corresponds to the JSON property `trials` # @return [Array] attr_accessor :trials def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @trials = args[:trials] if args.key?(:trials) end end # Response message for the ListVersions method. class GoogleCloudMlV1ListVersionsResponse include Google::Apis::Core::Hashable # Optional. Pass this token as the `page_token` field of the request for a # subsequent call. # Corresponds to the JSON property `nextPageToken` # @return [String] attr_accessor :next_page_token # The list of versions. # Corresponds to the JSON property `versions` # @return [Array] attr_accessor :versions def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @next_page_token = args[:next_page_token] if args.key?(:next_page_token) @versions = args[:versions] if args.key?(:versions) end end # class GoogleCloudMlV1Location include Google::Apis::Core::Hashable # Capabilities available in the location. # Corresponds to the JSON property `capabilities` # @return [Array] attr_accessor :capabilities # # Corresponds to the JSON property `name` # @return [String] attr_accessor :name def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @capabilities = args[:capabilities] if args.key?(:capabilities) @name = args[:name] if args.key?(:name) end end # Options for manually scaling a model. class GoogleCloudMlV1ManualScaling include Google::Apis::Core::Hashable # The number of nodes to allocate for this model. These nodes are always up, # starting from the time the model is deployed, so the cost of operating this # model will be proportional to `nodes` * number of hours since last billing # cycle plus the cost for each prediction performed. # Corresponds to the JSON property `nodes` # @return [Fixnum] attr_accessor :nodes def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @nodes = args[:nodes] if args.key?(:nodes) end end # A message representing a measurement. class GoogleCloudMlV1Measurement include Google::Apis::Core::Hashable # Output only. Time that the trial has been running at the point of this # measurement. # Corresponds to the JSON property `elapsedTime` # @return [String] attr_accessor :elapsed_time # Provides a list of metrics that act as inputs into the objective function. # Corresponds to the JSON property `metrics` # @return [Array] attr_accessor :metrics # The number of steps a machine learning model has been trained for. Must be non- # negative. # Corresponds to the JSON property `stepCount` # @return [Fixnum] attr_accessor :step_count def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @elapsed_time = args[:elapsed_time] if args.key?(:elapsed_time) @metrics = args[:metrics] if args.key?(:metrics) @step_count = args[:step_count] if args.key?(:step_count) end end # Represents a machine learning solution. A model can have multiple versions, # each of which is a deployed, trained model ready to receive prediction # requests. The model itself is just a container. class GoogleCloudMlV1Model include Google::Apis::Core::Hashable # Represents a version of the model. Each version is a trained model deployed in # the cloud, ready to handle prediction requests. A model can have multiple # versions. You can get information about all of the versions of a given model # by calling projects.models.versions.list. # Corresponds to the JSON property `defaultVersion` # @return [Google::Apis::MlV1::GoogleCloudMlV1Version] attr_accessor :default_version # Optional. The description specified for the model when it was created. # Corresponds to the JSON property `description` # @return [String] attr_accessor :description # `etag` is used for optimistic concurrency control as a way to help prevent # simultaneous updates of a model from overwriting each other. It is strongly # suggested that systems make use of the `etag` in the read-modify-write cycle # to perform model updates in order to avoid race conditions: An `etag` is # returned in the response to `GetModel`, and systems are expected to put that # etag in the request to `UpdateModel` to ensure that their change will be # applied to the model as intended. # Corresponds to the JSON property `etag` # NOTE: Values are automatically base64 encoded/decoded in the client library. # @return [String] attr_accessor :etag # Optional. One or more labels that you can add, to organize your models. Each # label is a key-value pair, where both the key and the value are arbitrary # strings that you supply. For more information, see the documentation on using # labels. # Corresponds to the JSON property `labels` # @return [Hash] attr_accessor :labels # Required. The name specified for the model when it was created. The model name # must be unique within the project it is created in. # Corresponds to the JSON property `name` # @return [String] attr_accessor :name # Optional. If true, online prediction nodes send `stderr` and `stdout` streams # to Stackdriver Logging. These can be more verbose than the standard access # logs (see `onlinePredictionLogging`) and can incur higher cost. However, they # are helpful for debugging. Note that [Stackdriver logs may incur a cost](/ # stackdriver/pricing), especially if your project receives prediction requests # at a high QPS. Estimate your costs before enabling this option. Default is # false. # Corresponds to the JSON property `onlinePredictionConsoleLogging` # @return [Boolean] attr_accessor :online_prediction_console_logging alias_method :online_prediction_console_logging?, :online_prediction_console_logging # Optional. If true, online prediction access logs are sent to StackDriver # Logging. These logs are like standard server access logs, containing # information like timestamp and latency for each request. Note that [ # Stackdriver logs may incur a cost](/stackdriver/pricing), especially if your # project receives prediction requests at a high queries per second rate (QPS). # Estimate your costs before enabling this option. Default is false. # Corresponds to the JSON property `onlinePredictionLogging` # @return [Boolean] attr_accessor :online_prediction_logging alias_method :online_prediction_logging?, :online_prediction_logging # Optional. The list of regions where the model is going to be deployed. Only # one region per model is supported. Defaults to 'us-central1' if nothing is set. # See the available regions for AI Platform services. Note: * No matter where a # model is deployed, it can always be accessed by users from anywhere, both for # online and batch prediction. * The region for a batch prediction job is set by # the region field when submitting the batch prediction job and does not take # its value from this field. # Corresponds to the JSON property `regions` # @return [Array] attr_accessor :regions def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @default_version = args[:default_version] if args.key?(:default_version) @description = args[:description] if args.key?(:description) @etag = args[:etag] if args.key?(:etag) @labels = args[:labels] if args.key?(:labels) @name = args[:name] if args.key?(:name) @online_prediction_console_logging = args[:online_prediction_console_logging] if args.key?(:online_prediction_console_logging) @online_prediction_logging = args[:online_prediction_logging] if args.key?(:online_prediction_logging) @regions = args[:regions] if args.key?(:regions) end end # Represents the metadata of the long-running operation. class GoogleCloudMlV1OperationMetadata include Google::Apis::Core::Hashable # The time the operation was submitted. # Corresponds to the JSON property `createTime` # @return [String] attr_accessor :create_time # The time operation processing completed. # Corresponds to the JSON property `endTime` # @return [String] attr_accessor :end_time # Indicates whether a request to cancel this operation has been made. # Corresponds to the JSON property `isCancellationRequested` # @return [Boolean] attr_accessor :is_cancellation_requested alias_method :is_cancellation_requested?, :is_cancellation_requested # The user labels, inherited from the model or the model version being operated # on. # Corresponds to the JSON property `labels` # @return [Hash] attr_accessor :labels # Contains the name of the model associated with the operation. # Corresponds to the JSON property `modelName` # @return [String] attr_accessor :model_name # The operation type. # Corresponds to the JSON property `operationType` # @return [String] attr_accessor :operation_type # Contains the project number associated with the operation. # Corresponds to the JSON property `projectNumber` # @return [Fixnum] attr_accessor :project_number # The time operation processing started. # Corresponds to the JSON property `startTime` # @return [String] attr_accessor :start_time # Represents a version of the model. Each version is a trained model deployed in # the cloud, ready to handle prediction requests. A model can have multiple # versions. You can get information about all of the versions of a given model # by calling projects.models.versions.list. # Corresponds to the JSON property `version` # @return [Google::Apis::MlV1::GoogleCloudMlV1Version] attr_accessor :version def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @create_time = args[:create_time] if args.key?(:create_time) @end_time = args[:end_time] if args.key?(:end_time) @is_cancellation_requested = args[:is_cancellation_requested] if args.key?(:is_cancellation_requested) @labels = args[:labels] if args.key?(:labels) @model_name = args[:model_name] if args.key?(:model_name) @operation_type = args[:operation_type] if args.key?(:operation_type) @project_number = args[:project_number] if args.key?(:project_number) @start_time = args[:start_time] if args.key?(:start_time) @version = args[:version] if args.key?(:version) end end # Represents a single hyperparameter to optimize. class GoogleCloudMlV1ParameterSpec include Google::Apis::Core::Hashable # Required if type is `CATEGORICAL`. The list of possible categories. # Corresponds to the JSON property `categoricalValues` # @return [Array] attr_accessor :categorical_values # Required if type is `DISCRETE`. A list of feasible points. The list should be # in strictly increasing order. For instance, this parameter might have possible # settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000 # values. # Corresponds to the JSON property `discreteValues` # @return [Array] attr_accessor :discrete_values # Required if type is `DOUBLE` or `INTEGER`. This field should be unset if type # is `CATEGORICAL`. This value should be integers if type is `INTEGER`. # Corresponds to the JSON property `maxValue` # @return [Float] attr_accessor :max_value # Required if type is `DOUBLE` or `INTEGER`. This field should be unset if type # is `CATEGORICAL`. This value should be integers if type is INTEGER. # Corresponds to the JSON property `minValue` # @return [Float] attr_accessor :min_value # Required. The parameter name must be unique amongst all ParameterConfigs in a # HyperparameterSpec message. E.g., "learning_rate". # Corresponds to the JSON property `parameterName` # @return [String] attr_accessor :parameter_name # Optional. How the parameter should be scaled to the hypercube. Leave unset for # categorical parameters. Some kind of scaling is strongly recommended for real # or integral parameters (e.g., `UNIT_LINEAR_SCALE`). # Corresponds to the JSON property `scaleType` # @return [String] attr_accessor :scale_type # Required. The type of the parameter. # Corresponds to the JSON property `type` # @return [String] attr_accessor :type def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @categorical_values = args[:categorical_values] if args.key?(:categorical_values) @discrete_values = args[:discrete_values] if args.key?(:discrete_values) @max_value = args[:max_value] if args.key?(:max_value) @min_value = args[:min_value] if args.key?(:min_value) @parameter_name = args[:parameter_name] if args.key?(:parameter_name) @scale_type = args[:scale_type] if args.key?(:scale_type) @type = args[:type] if args.key?(:type) end end # Request for predictions to be issued against a trained model. class GoogleCloudMlV1PredictRequest include Google::Apis::Core::Hashable # Message that represents an arbitrary HTTP body. It should only be used for # payload formats that can't be represented as JSON, such as raw binary or an # HTML page. This message can be used both in streaming and non-streaming API # methods in the request as well as the response. It can be used as a top-level # request field, which is convenient if one wants to extract parameters from # either the URL or HTTP template into the request fields and also want access # to the raw HTTP body. Example: message GetResourceRequest ` // A unique # request id. string request_id = 1; // The raw HTTP body is bound to this field. # google.api.HttpBody http_body = 2; ` service ResourceService ` rpc # GetResource(GetResourceRequest) returns (google.api.HttpBody); rpc # UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty); ` Example # with streaming methods: service CaldavService ` rpc GetCalendar(stream google. # api.HttpBody) returns (stream google.api.HttpBody); rpc UpdateCalendar(stream # google.api.HttpBody) returns (stream google.api.HttpBody); ` Use of this type # only changes how the request and response bodies are handled, all other # features will continue to work unchanged. # Corresponds to the JSON property `httpBody` # @return [Google::Apis::MlV1::GoogleApiHttpBody] attr_accessor :http_body def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @http_body = args[:http_body] if args.key?(:http_body) end end # Represents input parameters for a prediction job. class GoogleCloudMlV1PredictionInput include Google::Apis::Core::Hashable # Optional. Number of records per batch, defaults to 64. The service will buffer # batch_size number of records in memory before invoking one Tensorflow # prediction call internally. So take the record size and memory available into # consideration when setting this parameter. # Corresponds to the JSON property `batchSize` # @return [Fixnum] attr_accessor :batch_size # Required. The format of the input data files. # Corresponds to the JSON property `dataFormat` # @return [String] attr_accessor :data_format # Required. The Cloud Storage location of the input data files. May contain # wildcards. # Corresponds to the JSON property `inputPaths` # @return [Array] attr_accessor :input_paths # Optional. The maximum number of workers to be used for parallel processing. # Defaults to 10 if not specified. # Corresponds to the JSON property `maxWorkerCount` # @return [Fixnum] attr_accessor :max_worker_count # Use this field if you want to use the default version for the specified model. # The string must use the following format: `"projects/YOUR_PROJECT/models/ # YOUR_MODEL"` # Corresponds to the JSON property `modelName` # @return [String] attr_accessor :model_name # Optional. Format of the output data files, defaults to JSON. # Corresponds to the JSON property `outputDataFormat` # @return [String] attr_accessor :output_data_format # Required. The output Google Cloud Storage location. # Corresponds to the JSON property `outputPath` # @return [String] attr_accessor :output_path # Required. The Google Compute Engine region to run the prediction job in. See # the available regions for AI Platform services. # Corresponds to the JSON property `region` # @return [String] attr_accessor :region # Optional. The AI Platform runtime version to use for this batch prediction. If # not set, AI Platform will pick the runtime version used during the # CreateVersion request for this model version, or choose the latest stable # version when model version information is not available such as when the model # is specified by uri. # Corresponds to the JSON property `runtimeVersion` # @return [String] attr_accessor :runtime_version # Optional. The name of the signature defined in the SavedModel to use for this # job. Please refer to [SavedModel](https://tensorflow.github.io/serving/ # serving_basic.html) for information about how to use signatures. Defaults to [ # DEFAULT_SERVING_SIGNATURE_DEF_KEY](https://www.tensorflow.org/api_docs/python/ # tf/saved_model/signature_constants) , which is "serving_default". # Corresponds to the JSON property `signatureName` # @return [String] attr_accessor :signature_name # Use this field if you want to specify a Google Cloud Storage path for the # model to use. # Corresponds to the JSON property `uri` # @return [String] attr_accessor :uri # Use this field if you want to specify a version of the model to use. The # string is formatted the same way as `model_version`, with the addition of the # version information: `"projects/YOUR_PROJECT/models/YOUR_MODEL/versions/ # YOUR_VERSION"` # Corresponds to the JSON property `versionName` # @return [String] attr_accessor :version_name def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @batch_size = args[:batch_size] if args.key?(:batch_size) @data_format = args[:data_format] if args.key?(:data_format) @input_paths = args[:input_paths] if args.key?(:input_paths) @max_worker_count = args[:max_worker_count] if args.key?(:max_worker_count) @model_name = args[:model_name] if args.key?(:model_name) @output_data_format = args[:output_data_format] if args.key?(:output_data_format) @output_path = args[:output_path] if args.key?(:output_path) @region = args[:region] if args.key?(:region) @runtime_version = args[:runtime_version] if args.key?(:runtime_version) @signature_name = args[:signature_name] if args.key?(:signature_name) @uri = args[:uri] if args.key?(:uri) @version_name = args[:version_name] if args.key?(:version_name) end end # Represents results of a prediction job. class GoogleCloudMlV1PredictionOutput include Google::Apis::Core::Hashable # The number of data instances which resulted in errors. # Corresponds to the JSON property `errorCount` # @return [Fixnum] attr_accessor :error_count # Node hours used by the batch prediction job. # Corresponds to the JSON property `nodeHours` # @return [Float] attr_accessor :node_hours # The output Google Cloud Storage location provided at the job creation time. # Corresponds to the JSON property `outputPath` # @return [String] attr_accessor :output_path # The number of generated predictions. # Corresponds to the JSON property `predictionCount` # @return [Fixnum] attr_accessor :prediction_count def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @error_count = args[:error_count] if args.key?(:error_count) @node_hours = args[:node_hours] if args.key?(:node_hours) @output_path = args[:output_path] if args.key?(:output_path) @prediction_count = args[:prediction_count] if args.key?(:prediction_count) end end # Represents the configuration for a replica in a cluster. class GoogleCloudMlV1ReplicaConfig include Google::Apis::Core::Hashable # Represents a hardware accelerator request config. Note that the # AcceleratorConfig can be used in both Jobs and Versions. Learn more about [ # accelerators for training](/ml-engine/docs/using-gpus) and [accelerators for # online prediction](/ml-engine/docs/machine-types-online-prediction#gpus). # Corresponds to the JSON property `acceleratorConfig` # @return [Google::Apis::MlV1::GoogleCloudMlV1AcceleratorConfig] attr_accessor :accelerator_config # Arguments to the entrypoint command. The following rules apply for # container_command and container_args: - If you do not supply command or args: # The defaults defined in the Docker image are used. - If you supply a command # but no args: The default EntryPoint and the default Cmd defined in the Docker # image are ignored. Your command is run without any arguments. - If you supply # only args: The default Entrypoint defined in the Docker image is run with the # args that you supplied. - If you supply a command and args: The default # Entrypoint and the default Cmd defined in the Docker image are ignored. Your # command is run with your args. It cannot be set if custom container image is # not provided. Note that this field and [TrainingInput.args] are mutually # exclusive, i.e., both cannot be set at the same time. # Corresponds to the JSON property `containerArgs` # @return [Array] attr_accessor :container_args # The command with which the replica's custom container is run. If provided, it # will override default ENTRYPOINT of the docker image. If not provided, the # docker image's ENTRYPOINT is used. It cannot be set if custom container image # is not provided. Note that this field and [TrainingInput.args] are mutually # exclusive, i.e., both cannot be set at the same time. # Corresponds to the JSON property `containerCommand` # @return [Array] attr_accessor :container_command # The Docker image to run on the replica. This image must be in Container # Registry. Learn more about [configuring custom containers](/ai-platform/ # training/docs/distributed-training-containers). # Corresponds to the JSON property `imageUri` # @return [String] attr_accessor :image_uri # The AI Platform runtime version that includes a TensorFlow version matching # the one used in the custom container. This field is required if the replica is # a TPU worker that uses a custom container. Otherwise, do not specify this # field. This must be a [runtime version that currently supports training with # TPUs](/ml-engine/docs/tensorflow/runtime-version-list#tpu-support). Note that # the version of TensorFlow included in a runtime version may differ from the # numbering of the runtime version itself, because it may have a different [ # patch version](https://www.tensorflow.org/guide/version_compat# # semantic_versioning_20). In this field, you must specify the runtime version ( # TensorFlow minor version). For example, if your custom container runs # TensorFlow `1.x.y`, specify `1.x`. # Corresponds to the JSON property `tpuTfVersion` # @return [String] attr_accessor :tpu_tf_version def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @accelerator_config = args[:accelerator_config] if args.key?(:accelerator_config) @container_args = args[:container_args] if args.key?(:container_args) @container_command = args[:container_command] if args.key?(:container_command) @image_uri = args[:image_uri] if args.key?(:image_uri) @tpu_tf_version = args[:tpu_tf_version] if args.key?(:tpu_tf_version) end end # Configuration for logging request-response pairs to a BigQuery table. Online # prediction requests to a model version and the responses to these requests are # converted to raw strings and saved to the specified BigQuery table. Logging is # constrained by [BigQuery quotas and limits](/bigquery/quotas). If your project # exceeds BigQuery quotas or limits, AI Platform Prediction does not log request- # response pairs, but it continues to serve predictions. If you are using [ # continuous evaluation](/ml-engine/docs/continuous-evaluation/), you do not # need to specify this configuration manually. Setting up continuous evaluation # automatically enables logging of request-response pairs. class GoogleCloudMlV1RequestLoggingConfig include Google::Apis::Core::Hashable # Required. Fully qualified BigQuery table name in the following format: " # project_id.dataset_name.table_name" The specified table must already exist, # and the "Cloud ML Service Agent" for your project must have permission to # write to it. The table must have the following [schema](/bigquery/docs/schemas) # : Field nameType Mode model STRING REQUIRED model_version STRING REQUIRED time # TIMESTAMP REQUIRED raw_data STRING REQUIRED raw_prediction STRING NULLABLE # groundtruth STRING NULLABLE # Corresponds to the JSON property `bigqueryTableName` # @return [String] attr_accessor :bigquery_table_name # Percentage of requests to be logged, expressed as a fraction from 0 to 1. For # example, if you want to log 10% of requests, enter `0.1`. The sampling window # is the lifetime of the model version. Defaults to 0. # Corresponds to the JSON property `samplingPercentage` # @return [Float] attr_accessor :sampling_percentage def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @bigquery_table_name = args[:bigquery_table_name] if args.key?(:bigquery_table_name) @sampling_percentage = args[:sampling_percentage] if args.key?(:sampling_percentage) end end # An attribution method that approximates Shapley values for features that # contribute to the label being predicted. A sampling strategy is used to # approximate the value rather than considering all subsets of features. class GoogleCloudMlV1SampledShapleyAttribution include Google::Apis::Core::Hashable # The number of feature permutations to consider when approximating the Shapley # values. # Corresponds to the JSON property `numPaths` # @return [Fixnum] attr_accessor :num_paths def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @num_paths = args[:num_paths] if args.key?(:num_paths) end end # All parameters related to scheduling of training jobs. class GoogleCloudMlV1Scheduling include Google::Apis::Core::Hashable # Optional. The maximum job running time, expressed in seconds. The field can # contain up to nine fractional digits, terminated by `s`. If not specified, # this field defaults to `604800s` (seven days). If the training job is still # running after this duration, AI Platform Training cancels it. For example, if # you want to ensure your job runs for no more than 2 hours, set this field to ` # 7200s` (2 hours * 60 minutes / hour * 60 seconds / minute). If you submit your # training job using the `gcloud` tool, you can [provide this field in a `config. # yaml` file](/ai-platform/training/docs/training-jobs# # formatting_your_configuration_parameters). For example: ```yaml trainingInput: # ... scheduling: maxRunningTime: 7200s ... ``` # Corresponds to the JSON property `maxRunningTime` # @return [String] attr_accessor :max_running_time # # Corresponds to the JSON property `maxWaitTime` # @return [String] attr_accessor :max_wait_time def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @max_running_time = args[:max_running_time] if args.key?(:max_running_time) @max_wait_time = args[:max_wait_time] if args.key?(:max_wait_time) end end # Request message for the SetDefaultVersion request. class GoogleCloudMlV1SetDefaultVersionRequest include Google::Apis::Core::Hashable def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) end end # class GoogleCloudMlV1StopTrialRequest include Google::Apis::Core::Hashable def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) end end # A message representing a Study. class GoogleCloudMlV1Study include Google::Apis::Core::Hashable # Output only. Time at which the study was created. # Corresponds to the JSON property `createTime` # @return [String] attr_accessor :create_time # Output only. A human readable reason why the Study is inactive. This should be # empty if a study is ACTIVE or COMPLETED. # Corresponds to the JSON property `inactiveReason` # @return [String] attr_accessor :inactive_reason # Output only. The name of a study. # Corresponds to the JSON property `name` # @return [String] attr_accessor :name # Output only. The detailed state of a study. # Corresponds to the JSON property `state` # @return [String] attr_accessor :state # Represents configuration of a study. # Corresponds to the JSON property `studyConfig` # @return [Google::Apis::MlV1::GoogleCloudMlV1StudyConfig] attr_accessor :study_config def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @create_time = args[:create_time] if args.key?(:create_time) @inactive_reason = args[:inactive_reason] if args.key?(:inactive_reason) @name = args[:name] if args.key?(:name) @state = args[:state] if args.key?(:state) @study_config = args[:study_config] if args.key?(:study_config) end end # Represents configuration of a study. class GoogleCloudMlV1StudyConfig include Google::Apis::Core::Hashable # The search algorithm specified for the study. # Corresponds to the JSON property `algorithm` # @return [String] attr_accessor :algorithm # Configuration for Automated Early Stopping of Trials. If no # implementation_config is set, automated early stopping will not be run. # Corresponds to the JSON property `automatedStoppingConfig` # @return [Google::Apis::MlV1::GoogleCloudMlV1AutomatedStoppingConfig] attr_accessor :automated_stopping_config # Metric specs for the study. # Corresponds to the JSON property `metrics` # @return [Array] attr_accessor :metrics # Required. The set of parameters to tune. # Corresponds to the JSON property `parameters` # @return [Array] attr_accessor :parameters def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @algorithm = args[:algorithm] if args.key?(:algorithm) @automated_stopping_config = args[:automated_stopping_config] if args.key?(:automated_stopping_config) @metrics = args[:metrics] if args.key?(:metrics) @parameters = args[:parameters] if args.key?(:parameters) end end # Metadata field of a google.longrunning.Operation associated with a # SuggestTrialsRequest. class GoogleCloudMlV1SuggestTrialsMetadata include Google::Apis::Core::Hashable # The identifier of the client that is requesting the suggestion. # Corresponds to the JSON property `clientId` # @return [String] attr_accessor :client_id # The time operation was submitted. # Corresponds to the JSON property `createTime` # @return [String] attr_accessor :create_time # The name of the study that the trial belongs to. # Corresponds to the JSON property `study` # @return [String] attr_accessor :study # The number of suggestions requested. # Corresponds to the JSON property `suggestionCount` # @return [Fixnum] attr_accessor :suggestion_count def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @client_id = args[:client_id] if args.key?(:client_id) @create_time = args[:create_time] if args.key?(:create_time) @study = args[:study] if args.key?(:study) @suggestion_count = args[:suggestion_count] if args.key?(:suggestion_count) end end # The request message for the SuggestTrial service method. class GoogleCloudMlV1SuggestTrialsRequest include Google::Apis::Core::Hashable # Required. The identifier of the client that is requesting the suggestion. If # multiple SuggestTrialsRequests have the same `client_id`, the service will # return the identical suggested trial if the trial is pending, and provide a # new trial if the last suggested trial was completed. # Corresponds to the JSON property `clientId` # @return [String] attr_accessor :client_id # Required. The number of suggestions requested. # Corresponds to the JSON property `suggestionCount` # @return [Fixnum] attr_accessor :suggestion_count def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @client_id = args[:client_id] if args.key?(:client_id) @suggestion_count = args[:suggestion_count] if args.key?(:suggestion_count) end end # This message will be placed in the response field of a completed google. # longrunning.Operation associated with a SuggestTrials request. class GoogleCloudMlV1SuggestTrialsResponse include Google::Apis::Core::Hashable # The time at which operation processing completed. # Corresponds to the JSON property `endTime` # @return [String] attr_accessor :end_time # The time at which the operation was started. # Corresponds to the JSON property `startTime` # @return [String] attr_accessor :start_time # The state of the study. # Corresponds to the JSON property `studyState` # @return [String] attr_accessor :study_state # A list of trials. # Corresponds to the JSON property `trials` # @return [Array] attr_accessor :trials def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @end_time = args[:end_time] if args.key?(:end_time) @start_time = args[:start_time] if args.key?(:start_time) @study_state = args[:study_state] if args.key?(:study_state) @trials = args[:trials] if args.key?(:trials) end end # Represents input parameters for a training job. When using the gcloud command # to submit your training job, you can specify the input parameters as command- # line arguments and/or in a YAML configuration file referenced from the -- # config command-line argument. For details, see the guide to [submitting a # training job](/ai-platform/training/docs/training-jobs). class GoogleCloudMlV1TrainingInput include Google::Apis::Core::Hashable # Optional. Command-line arguments passed to the training application when it # starts. If your job uses a custom container, then the arguments are passed to # the container's `ENTRYPOINT` command. # Corresponds to the JSON property `args` # @return [Array] attr_accessor :args # Represents a custom encryption key configuration that can be applied to a # resource. # Corresponds to the JSON property `encryptionConfig` # @return [Google::Apis::MlV1::GoogleCloudMlV1EncryptionConfig] attr_accessor :encryption_config # Represents the configuration for a replica in a cluster. # Corresponds to the JSON property `evaluatorConfig` # @return [Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig] attr_accessor :evaluator_config # Optional. The number of evaluator replicas to use for the training job. Each # replica in the cluster will be of the type specified in `evaluator_type`. This # value can only be used when `scale_tier` is set to `CUSTOM`. If you set this # value, you must also set `evaluator_type`. The default value is zero. # Corresponds to the JSON property `evaluatorCount` # @return [Fixnum] attr_accessor :evaluator_count # Optional. Specifies the type of virtual machine to use for your training job's # evaluator nodes. The supported values are the same as those described in the # entry for `masterType`. This value must be consistent with the category of # machine type that `masterType` uses. In other words, both must be Compute # Engine machine types or both must be legacy machine types. This value must be # present when `scaleTier` is set to `CUSTOM` and `evaluatorCount` is greater # than zero. # Corresponds to the JSON property `evaluatorType` # @return [String] attr_accessor :evaluator_type # Represents a set of hyperparameters to optimize. # Corresponds to the JSON property `hyperparameters` # @return [Google::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec] attr_accessor :hyperparameters # Optional. A Google Cloud Storage path in which to store training outputs and # other data needed for training. This path is passed to your TensorFlow program # as the '--job-dir' command-line argument. The benefit of specifying this field # is that Cloud ML validates the path for use in training. # Corresponds to the JSON property `jobDir` # @return [String] attr_accessor :job_dir # Represents the configuration for a replica in a cluster. # Corresponds to the JSON property `masterConfig` # @return [Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig] attr_accessor :master_config # Optional. Specifies the type of virtual machine to use for your training job's # master worker. You must specify this field when `scaleTier` is set to `CUSTOM`. # You can use certain Compute Engine machine types directly in this field. The # following types are supported: - `n1-standard-4` - `n1-standard-8` - `n1- # standard-16` - `n1-standard-32` - `n1-standard-64` - `n1-standard-96` - `n1- # highmem-2` - `n1-highmem-4` - `n1-highmem-8` - `n1-highmem-16` - `n1-highmem- # 32` - `n1-highmem-64` - `n1-highmem-96` - `n1-highcpu-16` - `n1-highcpu-32` - ` # n1-highcpu-64` - `n1-highcpu-96` Learn more about [using Compute Engine # machine types](/ml-engine/docs/machine-types#compute-engine-machine-types). # Alternatively, you can use the following legacy machine types: - `standard` - ` # large_model` - `complex_model_s` - `complex_model_m` - `complex_model_l` - ` # standard_gpu` - `complex_model_m_gpu` - `complex_model_l_gpu` - `standard_p100` # - `complex_model_m_p100` - `standard_v100` - `large_model_v100` - ` # complex_model_m_v100` - `complex_model_l_v100` Learn more about [using legacy # machine types](/ml-engine/docs/machine-types#legacy-machine-types). Finally, # if you want to use a TPU for training, specify `cloud_tpu` in this field. # Learn more about the [special configuration options for training with TPUs](/ # ml-engine/docs/tensorflow/using-tpus#configuring_a_custom_tpu_machine). # Corresponds to the JSON property `masterType` # @return [String] attr_accessor :master_type # Optional. The full name of the [Compute Engine network](/vpc/docs/vpc) to # which the Job is peered. For example, `projects/12345/global/networks/myVPC`. # The format of this field is `projects/`project`/global/networks/`network``, # where `project` is a project number (like `12345`) and `network` is network # name. Private services access must already be configured for the network. If # left unspecified, the Job is not peered with any network. [Learn about using # VPC Network Peering.](/ai-platform/training/docs/vpc-peering). # Corresponds to the JSON property `network` # @return [String] attr_accessor :network # Required. The Google Cloud Storage location of the packages with the training # program and any additional dependencies. The maximum number of package URIs is # 100. # Corresponds to the JSON property `packageUris` # @return [Array] attr_accessor :package_uris # Represents the configuration for a replica in a cluster. # Corresponds to the JSON property `parameterServerConfig` # @return [Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig] attr_accessor :parameter_server_config # Optional. The number of parameter server replicas to use for the training job. # Each replica in the cluster will be of the type specified in ` # parameter_server_type`. This value can only be used when `scale_tier` is set # to `CUSTOM`. If you set this value, you must also set `parameter_server_type`. # The default value is zero. # Corresponds to the JSON property `parameterServerCount` # @return [Fixnum] attr_accessor :parameter_server_count # Optional. Specifies the type of virtual machine to use for your training job's # parameter server. The supported values are the same as those described in the # entry for `master_type`. This value must be consistent with the category of # machine type that `masterType` uses. In other words, both must be Compute # Engine machine types or both must be legacy machine types. This value must be # present when `scaleTier` is set to `CUSTOM` and `parameter_server_count` is # greater than zero. # Corresponds to the JSON property `parameterServerType` # @return [String] attr_accessor :parameter_server_type # Required. The Python module name to run after installing the packages. # Corresponds to the JSON property `pythonModule` # @return [String] attr_accessor :python_module # Optional. The version of Python used in training. You must either specify this # field or specify `masterConfig.imageUri`. The following Python versions are # available: * Python '3.7' is available when `runtime_version` is set to '1.15' # or later. * Python '3.5' is available when `runtime_version` is set to a # version from '1.4' to '1.14'. * Python '2.7' is available when ` # runtime_version` is set to '1.15' or earlier. Read more about the Python # versions available for [each runtime version](/ml-engine/docs/runtime-version- # list). # Corresponds to the JSON property `pythonVersion` # @return [String] attr_accessor :python_version # Required. The region to run the training job in. See the [available regions](/ # ai-platform/training/docs/regions) for AI Platform Training. # Corresponds to the JSON property `region` # @return [String] attr_accessor :region # Optional. The AI Platform runtime version to use for training. You must either # specify this field or specify `masterConfig.imageUri`. For more information, # see the [runtime version list](/ai-platform/training/docs/runtime-version-list) # and learn [how to manage runtime versions](/ai-platform/training/docs/ # versioning). # Corresponds to the JSON property `runtimeVersion` # @return [String] attr_accessor :runtime_version # Required. Specifies the machine types, the number of replicas for workers and # parameter servers. # Corresponds to the JSON property `scaleTier` # @return [String] attr_accessor :scale_tier # All parameters related to scheduling of training jobs. # Corresponds to the JSON property `scheduling` # @return [Google::Apis::MlV1::GoogleCloudMlV1Scheduling] attr_accessor :scheduling # Optional. The email address of a service account to use when running the # training appplication. You must have the `iam.serviceAccounts.actAs` # permission for the specified service account. In addition, the AI Platform # Training Google-managed service account must have the `roles/iam. # serviceAccountAdmin` role for the specified service account. [Learn more about # configuring a service account.](/ai-platform/training/docs/custom-service- # account) If not specified, the AI Platform Training Google-managed service # account is used by default. # Corresponds to the JSON property `serviceAccount` # @return [String] attr_accessor :service_account # Optional. Use `chief` instead of `master` in the `TF_CONFIG` environment # variable when training with a custom container. Defaults to `false`. [Learn # more about this field.](/ai-platform/training/docs/distributed-training- # details#chief-versus-master) This field has no effect for training jobs that # don't use a custom container. # Corresponds to the JSON property `useChiefInTfConfig` # @return [Boolean] attr_accessor :use_chief_in_tf_config alias_method :use_chief_in_tf_config?, :use_chief_in_tf_config # Represents the configuration for a replica in a cluster. # Corresponds to the JSON property `workerConfig` # @return [Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig] attr_accessor :worker_config # Optional. The number of worker replicas to use for the training job. Each # replica in the cluster will be of the type specified in `worker_type`. This # value can only be used when `scale_tier` is set to `CUSTOM`. If you set this # value, you must also set `worker_type`. The default value is zero. # Corresponds to the JSON property `workerCount` # @return [Fixnum] attr_accessor :worker_count # Optional. Specifies the type of virtual machine to use for your training job's # worker nodes. The supported values are the same as those described in the # entry for `masterType`. This value must be consistent with the category of # machine type that `masterType` uses. In other words, both must be Compute # Engine machine types or both must be legacy machine types. If you use ` # cloud_tpu` for this value, see special instructions for [configuring a custom # TPU machine](/ml-engine/docs/tensorflow/using-tpus# # configuring_a_custom_tpu_machine). This value must be present when `scaleTier` # is set to `CUSTOM` and `workerCount` is greater than zero. # Corresponds to the JSON property `workerType` # @return [String] attr_accessor :worker_type def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @args = args[:args] if args.key?(:args) @encryption_config = args[:encryption_config] if args.key?(:encryption_config) @evaluator_config = args[:evaluator_config] if args.key?(:evaluator_config) @evaluator_count = args[:evaluator_count] if args.key?(:evaluator_count) @evaluator_type = args[:evaluator_type] if args.key?(:evaluator_type) @hyperparameters = args[:hyperparameters] if args.key?(:hyperparameters) @job_dir = args[:job_dir] if args.key?(:job_dir) @master_config = args[:master_config] if args.key?(:master_config) @master_type = args[:master_type] if args.key?(:master_type) @network = args[:network] if args.key?(:network) @package_uris = args[:package_uris] if args.key?(:package_uris) @parameter_server_config = args[:parameter_server_config] if args.key?(:parameter_server_config) @parameter_server_count = args[:parameter_server_count] if args.key?(:parameter_server_count) @parameter_server_type = args[:parameter_server_type] if args.key?(:parameter_server_type) @python_module = args[:python_module] if args.key?(:python_module) @python_version = args[:python_version] if args.key?(:python_version) @region = args[:region] if args.key?(:region) @runtime_version = args[:runtime_version] if args.key?(:runtime_version) @scale_tier = args[:scale_tier] if args.key?(:scale_tier) @scheduling = args[:scheduling] if args.key?(:scheduling) @service_account = args[:service_account] if args.key?(:service_account) @use_chief_in_tf_config = args[:use_chief_in_tf_config] if args.key?(:use_chief_in_tf_config) @worker_config = args[:worker_config] if args.key?(:worker_config) @worker_count = args[:worker_count] if args.key?(:worker_count) @worker_type = args[:worker_type] if args.key?(:worker_type) end end # Represents results of a training job. Output only. class GoogleCloudMlV1TrainingOutput include Google::Apis::Core::Hashable # Represents output related to a built-in algorithm Job. # Corresponds to the JSON property `builtInAlgorithmOutput` # @return [Google::Apis::MlV1::GoogleCloudMlV1BuiltInAlgorithmOutput] attr_accessor :built_in_algorithm_output # The number of hyperparameter tuning trials that completed successfully. Only # set for hyperparameter tuning jobs. # Corresponds to the JSON property `completedTrialCount` # @return [Fixnum] attr_accessor :completed_trial_count # The amount of ML units consumed by the job. # Corresponds to the JSON property `consumedMLUnits` # @return [Float] attr_accessor :consumed_ml_units # The TensorFlow summary tag name used for optimizing hyperparameter tuning # trials. See [`HyperparameterSpec.hyperparameterMetricTag`](#HyperparameterSpec. # FIELDS.hyperparameter_metric_tag) for more information. Only set for # hyperparameter tuning jobs. # Corresponds to the JSON property `hyperparameterMetricTag` # @return [String] attr_accessor :hyperparameter_metric_tag # Whether this job is a built-in Algorithm job. # Corresponds to the JSON property `isBuiltInAlgorithmJob` # @return [Boolean] attr_accessor :is_built_in_algorithm_job alias_method :is_built_in_algorithm_job?, :is_built_in_algorithm_job # Whether this job is a hyperparameter tuning job. # Corresponds to the JSON property `isHyperparameterTuningJob` # @return [Boolean] attr_accessor :is_hyperparameter_tuning_job alias_method :is_hyperparameter_tuning_job?, :is_hyperparameter_tuning_job # Results for individual Hyperparameter trials. Only set for hyperparameter # tuning jobs. # Corresponds to the JSON property `trials` # @return [Array] attr_accessor :trials def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @built_in_algorithm_output = args[:built_in_algorithm_output] if args.key?(:built_in_algorithm_output) @completed_trial_count = args[:completed_trial_count] if args.key?(:completed_trial_count) @consumed_ml_units = args[:consumed_ml_units] if args.key?(:consumed_ml_units) @hyperparameter_metric_tag = args[:hyperparameter_metric_tag] if args.key?(:hyperparameter_metric_tag) @is_built_in_algorithm_job = args[:is_built_in_algorithm_job] if args.key?(:is_built_in_algorithm_job) @is_hyperparameter_tuning_job = args[:is_hyperparameter_tuning_job] if args.key?(:is_hyperparameter_tuning_job) @trials = args[:trials] if args.key?(:trials) end end # A message representing a trial. class GoogleCloudMlV1Trial include Google::Apis::Core::Hashable # Output only. The identifier of the client that originally requested this trial. # Corresponds to the JSON property `clientId` # @return [String] attr_accessor :client_id # Output only. Time at which the trial's status changed to COMPLETED. # Corresponds to the JSON property `endTime` # @return [String] attr_accessor :end_time # A message representing a measurement. # Corresponds to the JSON property `finalMeasurement` # @return [Google::Apis::MlV1::GoogleCloudMlV1Measurement] attr_accessor :final_measurement # Output only. A human readable string describing why the trial is infeasible. # This should only be set if trial_infeasible is true. # Corresponds to the JSON property `infeasibleReason` # @return [String] attr_accessor :infeasible_reason # A list of measurements that are strictly lexicographically ordered by their # induced tuples (steps, elapsed_time). These are used for early stopping # computations. # Corresponds to the JSON property `measurements` # @return [Array] attr_accessor :measurements # Output only. Name of the trial assigned by the service. # Corresponds to the JSON property `name` # @return [String] attr_accessor :name # The parameters of the trial. # Corresponds to the JSON property `parameters` # @return [Array] attr_accessor :parameters # Output only. Time at which the trial was started. # Corresponds to the JSON property `startTime` # @return [String] attr_accessor :start_time # The detailed state of a trial. # Corresponds to the JSON property `state` # @return [String] attr_accessor :state # Output only. If true, the parameters in this trial are not attempted again. # Corresponds to the JSON property `trialInfeasible` # @return [Boolean] attr_accessor :trial_infeasible alias_method :trial_infeasible?, :trial_infeasible def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @client_id = args[:client_id] if args.key?(:client_id) @end_time = args[:end_time] if args.key?(:end_time) @final_measurement = args[:final_measurement] if args.key?(:final_measurement) @infeasible_reason = args[:infeasible_reason] if args.key?(:infeasible_reason) @measurements = args[:measurements] if args.key?(:measurements) @name = args[:name] if args.key?(:name) @parameters = args[:parameters] if args.key?(:parameters) @start_time = args[:start_time] if args.key?(:start_time) @state = args[:state] if args.key?(:state) @trial_infeasible = args[:trial_infeasible] if args.key?(:trial_infeasible) end end # Represents a version of the model. Each version is a trained model deployed in # the cloud, ready to handle prediction requests. A model can have multiple # versions. You can get information about all of the versions of a given model # by calling projects.models.versions.list. class GoogleCloudMlV1Version include Google::Apis::Core::Hashable # Represents a hardware accelerator request config. Note that the # AcceleratorConfig can be used in both Jobs and Versions. Learn more about [ # accelerators for training](/ml-engine/docs/using-gpus) and [accelerators for # online prediction](/ml-engine/docs/machine-types-online-prediction#gpus). # Corresponds to the JSON property `acceleratorConfig` # @return [Google::Apis::MlV1::GoogleCloudMlV1AcceleratorConfig] attr_accessor :accelerator_config # Options for automatically scaling a model. # Corresponds to the JSON property `autoScaling` # @return [Google::Apis::MlV1::GoogleCloudMlV1AutoScaling] attr_accessor :auto_scaling # Output only. The time the version was created. # Corresponds to the JSON property `createTime` # @return [String] attr_accessor :create_time # Required. The Cloud Storage location of the trained model used to create the # version. See the [guide to model deployment](/ml-engine/docs/tensorflow/ # deploying-models) for more information. When passing Version to projects. # models.versions.create the model service uses the specified location as the # source of the model. Once deployed, the model version is hosted by the # prediction service, so this location is useful only as a historical record. # The total number of model files can't exceed 1000. # Corresponds to the JSON property `deploymentUri` # @return [String] attr_accessor :deployment_uri # Optional. The description specified for the version when it was created. # Corresponds to the JSON property `description` # @return [String] attr_accessor :description # EndpointMap is used to provide paths for predict/explain/healthcheck to # customers. It's an output only field in the version proto which can be only # set on the server side. Public endpoints follow the format specified on the # user facing doc, and private endpoints are customized for each privately # deploymed model/version. # Corresponds to the JSON property `endpoints` # @return [Google::Apis::MlV1::GoogleCloudMlV1EndpointMap] attr_accessor :endpoints # Output only. The details of a failure or a cancellation. # Corresponds to the JSON property `errorMessage` # @return [String] attr_accessor :error_message # `etag` is used for optimistic concurrency control as a way to help prevent # simultaneous updates of a model from overwriting each other. It is strongly # suggested that systems make use of the `etag` in the read-modify-write cycle # to perform model updates in order to avoid race conditions: An `etag` is # returned in the response to `GetVersion`, and systems are expected to put that # etag in the request to `UpdateVersion` to ensure that their change will be # applied to the model as intended. # Corresponds to the JSON property `etag` # NOTE: Values are automatically base64 encoded/decoded in the client library. # @return [String] attr_accessor :etag # Message holding configuration options for explaining model predictions. There # are two feature attribution methods supported for TensorFlow models: # integrated gradients and sampled Shapley. [Learn more about feature # attributions.](/ai-platform/prediction/docs/ai-explanations/overview) # Corresponds to the JSON property `explanationConfig` # @return [Google::Apis::MlV1::GoogleCloudMlV1ExplanationConfig] attr_accessor :explanation_config # Optional. The machine learning framework AI Platform uses to train this # version of the model. Valid values are `TENSORFLOW`, `SCIKIT_LEARN`, `XGBOOST`. # If you do not specify a framework, AI Platform will analyze files in the # deployment_uri to determine a framework. If you choose `SCIKIT_LEARN` or ` # XGBOOST`, you must also set the runtime version of the model to 1.4 or greater. # Do **not** specify a framework if you're deploying a [custom prediction # routine](/ml-engine/docs/tensorflow/custom-prediction-routines). If you # specify a [Compute Engine (N1) machine type](/ml-engine/docs/machine-types- # online-prediction) in the `machineType` field, you must specify `TENSORFLOW` # for the framework. # Corresponds to the JSON property `framework` # @return [String] attr_accessor :framework # Output only. If true, this version will be used to handle prediction requests # that do not specify a version. You can change the default version by calling # projects.methods.versions.setDefault. # Corresponds to the JSON property `isDefault` # @return [Boolean] attr_accessor :is_default alias_method :is_default?, :is_default # Optional. One or more labels that you can add, to organize your model versions. # Each label is a key-value pair, where both the key and the value are # arbitrary strings that you supply. For more information, see the documentation # on using labels. # Corresponds to the JSON property `labels` # @return [Hash] attr_accessor :labels # Output only. The time the version was last used for prediction. # Corresponds to the JSON property `lastUseTime` # @return [String] attr_accessor :last_use_time # Optional. The type of machine on which to serve the model. Currently only # applies to online prediction service. If this field is not specified, it # defaults to `mls1-c1-m2`. Online prediction supports the following machine # types: * `mls1-c1-m2` * `mls1-c4-m2` * `n1-standard-2` * `n1-standard-4` * `n1- # standard-8` * `n1-standard-16` * `n1-standard-32` * `n1-highmem-2` * `n1- # highmem-4` * `n1-highmem-8` * `n1-highmem-16` * `n1-highmem-32` * `n1-highcpu- # 2` * `n1-highcpu-4` * `n1-highcpu-8` * `n1-highcpu-16` * `n1-highcpu-32` `mls1- # c1-m2` is generally available. All other machine types are available in beta. # Learn more about the [differences between machine types](/ml-engine/docs/ # machine-types-online-prediction). # Corresponds to the JSON property `machineType` # @return [String] attr_accessor :machine_type # Options for manually scaling a model. # Corresponds to the JSON property `manualScaling` # @return [Google::Apis::MlV1::GoogleCloudMlV1ManualScaling] attr_accessor :manual_scaling # Required. The name specified for the version when it was created. The version # name must be unique within the model it is created in. # Corresponds to the JSON property `name` # @return [String] attr_accessor :name # Optional. Cloud Storage paths (`gs://…`) of packages for [custom prediction # routines](/ml-engine/docs/tensorflow/custom-prediction-routines) or [scikit- # learn pipelines with custom code](/ml-engine/docs/scikit/exporting-for- # prediction#custom-pipeline-code). For a custom prediction routine, one of # these packages must contain your Predictor class (see [`predictionClass`](# # Version.FIELDS.prediction_class)). Additionally, include any dependencies used # by your Predictor or scikit-learn pipeline uses that are not already included # in your selected [runtime version](/ml-engine/docs/tensorflow/runtime-version- # list). If you specify this field, you must also set [`runtimeVersion`](# # Version.FIELDS.runtime_version) to 1.4 or greater. # Corresponds to the JSON property `packageUris` # @return [Array] attr_accessor :package_uris # Optional. The fully qualified name (module_name.class_name) of a class that # implements the Predictor interface described in this reference field. The # module containing this class should be included in a package provided to the [` # packageUris` field](#Version.FIELDS.package_uris). Specify this field if and # only if you are deploying a [custom prediction routine (beta)](/ml-engine/docs/ # tensorflow/custom-prediction-routines). If you specify this field, you must # set [`runtimeVersion`](#Version.FIELDS.runtime_version) to 1.4 or greater and # you must set `machineType` to a [legacy (MLS1) machine type](/ml-engine/docs/ # machine-types-online-prediction). The following code sample provides the # Predictor interface: class Predictor(object): """Interface for constructing # custom predictors.""" def predict(self, instances, **kwargs): """Performs # custom prediction. Instances are the decoded values from the request. They # have already been deserialized from JSON. Args: instances: A list of # prediction input instances. **kwargs: A dictionary of keyword args provided as # additional fields on the predict request body. Returns: A list of outputs # containing the prediction results. This list must be JSON serializable. """ # raise NotImplementedError() @classmethod def from_path(cls, model_dir): """ # Creates an instance of Predictor using the given path. Loading of the # predictor should be done in this method. Args: model_dir: The local directory # that contains the exported model file along with any additional files uploaded # when creating the version resource. Returns: An instance implementing this # Predictor class. """ raise NotImplementedError() Learn more about [the # Predictor interface and custom prediction routines](/ml-engine/docs/tensorflow/ # custom-prediction-routines). # Corresponds to the JSON property `predictionClass` # @return [String] attr_accessor :prediction_class # Required. The version of Python used in prediction. The following Python # versions are available: * Python '3.7' is available when `runtime_version` is # set to '1.15' or later. * Python '3.5' is available when `runtime_version` is # set to a version from '1.4' to '1.14'. * Python '2.7' is available when ` # runtime_version` is set to '1.15' or earlier. Read more about the Python # versions available for [each runtime version](/ml-engine/docs/runtime-version- # list). # Corresponds to the JSON property `pythonVersion` # @return [String] attr_accessor :python_version # Configuration for logging request-response pairs to a BigQuery table. Online # prediction requests to a model version and the responses to these requests are # converted to raw strings and saved to the specified BigQuery table. Logging is # constrained by [BigQuery quotas and limits](/bigquery/quotas). If your project # exceeds BigQuery quotas or limits, AI Platform Prediction does not log request- # response pairs, but it continues to serve predictions. If you are using [ # continuous evaluation](/ml-engine/docs/continuous-evaluation/), you do not # need to specify this configuration manually. Setting up continuous evaluation # automatically enables logging of request-response pairs. # Corresponds to the JSON property `requestLoggingConfig` # @return [Google::Apis::MlV1::GoogleCloudMlV1RequestLoggingConfig] attr_accessor :request_logging_config # Required. The AI Platform runtime version to use for this deployment. For more # information, see the [runtime version list](/ml-engine/docs/runtime-version- # list) and [how to manage runtime versions](/ml-engine/docs/versioning). # Corresponds to the JSON property `runtimeVersion` # @return [String] attr_accessor :runtime_version # Optional. Specifies the service account for resource access control. # Corresponds to the JSON property `serviceAccount` # @return [String] attr_accessor :service_account # Output only. The state of a version. # Corresponds to the JSON property `state` # @return [String] attr_accessor :state def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @accelerator_config = args[:accelerator_config] if args.key?(:accelerator_config) @auto_scaling = args[:auto_scaling] if args.key?(:auto_scaling) @create_time = args[:create_time] if args.key?(:create_time) @deployment_uri = args[:deployment_uri] if args.key?(:deployment_uri) @description = args[:description] if args.key?(:description) @endpoints = args[:endpoints] if args.key?(:endpoints) @error_message = args[:error_message] if args.key?(:error_message) @etag = args[:etag] if args.key?(:etag) @explanation_config = args[:explanation_config] if args.key?(:explanation_config) @framework = args[:framework] if args.key?(:framework) @is_default = args[:is_default] if args.key?(:is_default) @labels = args[:labels] if args.key?(:labels) @last_use_time = args[:last_use_time] if args.key?(:last_use_time) @machine_type = args[:machine_type] if args.key?(:machine_type) @manual_scaling = args[:manual_scaling] if args.key?(:manual_scaling) @name = args[:name] if args.key?(:name) @package_uris = args[:package_uris] if args.key?(:package_uris) @prediction_class = args[:prediction_class] if args.key?(:prediction_class) @python_version = args[:python_version] if args.key?(:python_version) @request_logging_config = args[:request_logging_config] if args.key?(:request_logging_config) @runtime_version = args[:runtime_version] if args.key?(:runtime_version) @service_account = args[:service_account] if args.key?(:service_account) @state = args[:state] if args.key?(:state) end end # Attributes credit by computing the XRAI taking advantage of the model's fully # differentiable structure. Refer to this paper for more details: https://arxiv. # org/abs/1906.02825 Currently only implemented for models with natural image # inputs. class GoogleCloudMlV1XraiAttribution include Google::Apis::Core::Hashable # Number of steps for approximating the path integral. A good value to start is # 50 and gradually increase until the sum to diff property is met within the # desired error range. # Corresponds to the JSON property `numIntegralSteps` # @return [Fixnum] attr_accessor :num_integral_steps def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @num_integral_steps = args[:num_integral_steps] if args.key?(:num_integral_steps) end end # Specifies the audit configuration for a service. The configuration determines # which permission types are logged, and what identities, if any, are exempted # from logging. An AuditConfig must have one or more AuditLogConfigs. If there # are AuditConfigs for both `allServices` and a specific service, the union of # the two AuditConfigs is used for that service: the log_types specified in each # AuditConfig are enabled, and the exempted_members in each AuditLogConfig are # exempted. Example Policy with multiple AuditConfigs: ` "audit_configs": [ ` " # service": "allServices", "audit_log_configs": [ ` "log_type": "DATA_READ", " # exempted_members": [ "user:jose@example.com" ] `, ` "log_type": "DATA_WRITE" `, # ` "log_type": "ADMIN_READ" ` ] `, ` "service": "sampleservice.googleapis.com", # "audit_log_configs": [ ` "log_type": "DATA_READ" `, ` "log_type": "DATA_WRITE" # , "exempted_members": [ "user:aliya@example.com" ] ` ] ` ] ` For sampleservice, # this policy enables DATA_READ, DATA_WRITE and ADMIN_READ logging. It also # exempts jose@example.com from DATA_READ logging, and aliya@example.com from # DATA_WRITE logging. class GoogleIamV1AuditConfig include Google::Apis::Core::Hashable # The configuration for logging of each type of permission. # Corresponds to the JSON property `auditLogConfigs` # @return [Array] attr_accessor :audit_log_configs # Specifies a service that will be enabled for audit logging. For example, ` # storage.googleapis.com`, `cloudsql.googleapis.com`. `allServices` is a special # value that covers all services. # Corresponds to the JSON property `service` # @return [String] attr_accessor :service def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @audit_log_configs = args[:audit_log_configs] if args.key?(:audit_log_configs) @service = args[:service] if args.key?(:service) end end # Provides the configuration for logging a type of permissions. Example: ` " # audit_log_configs": [ ` "log_type": "DATA_READ", "exempted_members": [ "user: # jose@example.com" ] `, ` "log_type": "DATA_WRITE" ` ] ` This enables ' # DATA_READ' and 'DATA_WRITE' logging, while exempting jose@example.com from # DATA_READ logging. class GoogleIamV1AuditLogConfig include Google::Apis::Core::Hashable # Specifies the identities that do not cause logging for this type of permission. # Follows the same format of Binding.members. # Corresponds to the JSON property `exemptedMembers` # @return [Array] attr_accessor :exempted_members # The log type that this config enables. # Corresponds to the JSON property `logType` # @return [String] attr_accessor :log_type def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @exempted_members = args[:exempted_members] if args.key?(:exempted_members) @log_type = args[:log_type] if args.key?(:log_type) end end # Associates `members` with a `role`. class GoogleIamV1Binding include Google::Apis::Core::Hashable # Represents a textual expression in the Common Expression Language (CEL) syntax. # CEL is a C-like expression language. The syntax and semantics of CEL are # documented at https://github.com/google/cel-spec. Example (Comparison): title: # "Summary size limit" description: "Determines if a summary is less than 100 # chars" expression: "document.summary.size() < 100" Example (Equality): title: " # Requestor is owner" description: "Determines if requestor is the document # owner" expression: "document.owner == request.auth.claims.email" Example ( # Logic): title: "Public documents" description: "Determine whether the document # should be publicly visible" expression: "document.type != 'private' && # document.type != 'internal'" Example (Data Manipulation): title: "Notification # string" description: "Create a notification string with a timestamp." # expression: "'New message received at ' + string(document.create_time)" The # exact variables and functions that may be referenced within an expression are # determined by the service that evaluates it. See the service documentation for # additional information. # Corresponds to the JSON property `condition` # @return [Google::Apis::MlV1::GoogleTypeExpr] attr_accessor :condition # Specifies the identities requesting access for a Cloud Platform resource. ` # members` can have the following values: * `allUsers`: A special identifier # that represents anyone who is on the internet; with or without a Google # account. * `allAuthenticatedUsers`: A special identifier that represents # anyone who is authenticated with a Google account or a service account. * ` # user:`emailid``: An email address that represents a specific Google account. # For example, `alice@example.com` . * `serviceAccount:`emailid``: An email # address that represents a service account. For example, `my-other-app@appspot. # gserviceaccount.com`. * `group:`emailid``: An email address that represents a # Google group. For example, `admins@example.com`. * `deleted:user:`emailid`?uid= # `uniqueid``: An email address (plus unique identifier) representing a user # that has been recently deleted. For example, `alice@example.com?uid= # 123456789012345678901`. If the user is recovered, this value reverts to `user:` # emailid`` and the recovered user retains the role in the binding. * `deleted: # serviceAccount:`emailid`?uid=`uniqueid``: An email address (plus unique # identifier) representing a service account that has been recently deleted. For # example, `my-other-app@appspot.gserviceaccount.com?uid=123456789012345678901`. # If the service account is undeleted, this value reverts to `serviceAccount:` # emailid`` and the undeleted service account retains the role in the binding. * # `deleted:group:`emailid`?uid=`uniqueid``: An email address (plus unique # identifier) representing a Google group that has been recently deleted. For # example, `admins@example.com?uid=123456789012345678901`. If the group is # recovered, this value reverts to `group:`emailid`` and the recovered group # retains the role in the binding. * `domain:`domain``: The G Suite domain ( # primary) that represents all the users of that domain. For example, `google. # com` or `example.com`. # Corresponds to the JSON property `members` # @return [Array] attr_accessor :members # Role that is assigned to `members`. For example, `roles/viewer`, `roles/editor` # , or `roles/owner`. # Corresponds to the JSON property `role` # @return [String] attr_accessor :role def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @condition = args[:condition] if args.key?(:condition) @members = args[:members] if args.key?(:members) @role = args[:role] if args.key?(:role) end end # An Identity and Access Management (IAM) policy, which specifies access # controls for Google Cloud resources. A `Policy` is a collection of `bindings`. # A `binding` binds one or more `members` to a single `role`. Members can be # user accounts, service accounts, Google groups, and domains (such as G Suite). # A `role` is a named list of permissions; each `role` can be an IAM predefined # role or a user-created custom role. For some types of Google Cloud resources, # a `binding` can also specify a `condition`, which is a logical expression that # allows access to a resource only if the expression evaluates to `true`. A # condition can add constraints based on attributes of the request, the resource, # or both. To learn which resources support conditions in their IAM policies, # see the [IAM documentation](https://cloud.google.com/iam/help/conditions/ # resource-policies). **JSON example:** ` "bindings": [ ` "role": "roles/ # resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", " # group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@ # appspot.gserviceaccount.com" ] `, ` "role": "roles/resourcemanager. # organizationViewer", "members": [ "user:eve@example.com" ], "condition": ` " # title": "expirable access", "description": "Does not grant access after Sep # 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", ` # ` ], "etag": "BwWWja0YfJA=", "version": 3 ` **YAML example:** bindings: - # members: - user:mike@example.com - group:admins@example.com - domain:google. # com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/ # resourcemanager.organizationAdmin - members: - user:eve@example.com role: # roles/resourcemanager.organizationViewer condition: title: expirable access # description: Does not grant access after Sep 2020 expression: request.time < # timestamp('2020-10-01T00:00:00.000Z') - etag: BwWWja0YfJA= - version: 3 For a # description of IAM and its features, see the [IAM documentation](https://cloud. # google.com/iam/docs/). class GoogleIamV1Policy include Google::Apis::Core::Hashable # Specifies cloud audit logging configuration for this policy. # Corresponds to the JSON property `auditConfigs` # @return [Array] attr_accessor :audit_configs # Associates a list of `members` to a `role`. Optionally, may specify a ` # condition` that determines how and when the `bindings` are applied. Each of # the `bindings` must contain at least one member. # Corresponds to the JSON property `bindings` # @return [Array] attr_accessor :bindings # `etag` is used for optimistic concurrency control as a way to help prevent # simultaneous updates of a policy from overwriting each other. It is strongly # suggested that systems make use of the `etag` in the read-modify-write cycle # to perform policy updates in order to avoid race conditions: An `etag` is # returned in the response to `getIamPolicy`, and systems are expected to put # that etag in the request to `setIamPolicy` to ensure that their change will be # applied to the same version of the policy. **Important:** If you use IAM # Conditions, you must include the `etag` field whenever you call `setIamPolicy`. # If you omit this field, then IAM allows you to overwrite a version `3` policy # with a version `1` policy, and all of the conditions in the version `3` policy # are lost. # Corresponds to the JSON property `etag` # NOTE: Values are automatically base64 encoded/decoded in the client library. # @return [String] attr_accessor :etag # Specifies the format of the policy. Valid values are `0`, `1`, and `3`. # Requests that specify an invalid value are rejected. Any operation that # affects conditional role bindings must specify version `3`. This requirement # applies to the following operations: * Getting a policy that includes a # conditional role binding * Adding a conditional role binding to a policy * # Changing a conditional role binding in a policy * Removing any role binding, # with or without a condition, from a policy that includes conditions ** # Important:** If you use IAM Conditions, you must include the `etag` field # whenever you call `setIamPolicy`. If you omit this field, then IAM allows you # to overwrite a version `3` policy with a version `1` policy, and all of the # conditions in the version `3` policy are lost. If a policy does not include # any conditions, operations on that policy may specify any valid version or # leave the field unset. To learn which resources support conditions in their # IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/ # conditions/resource-policies). # Corresponds to the JSON property `version` # @return [Fixnum] attr_accessor :version def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @audit_configs = args[:audit_configs] if args.key?(:audit_configs) @bindings = args[:bindings] if args.key?(:bindings) @etag = args[:etag] if args.key?(:etag) @version = args[:version] if args.key?(:version) end end # Request message for `SetIamPolicy` method. class GoogleIamV1SetIamPolicyRequest include Google::Apis::Core::Hashable # An Identity and Access Management (IAM) policy, which specifies access # controls for Google Cloud resources. A `Policy` is a collection of `bindings`. # A `binding` binds one or more `members` to a single `role`. Members can be # user accounts, service accounts, Google groups, and domains (such as G Suite). # A `role` is a named list of permissions; each `role` can be an IAM predefined # role or a user-created custom role. For some types of Google Cloud resources, # a `binding` can also specify a `condition`, which is a logical expression that # allows access to a resource only if the expression evaluates to `true`. A # condition can add constraints based on attributes of the request, the resource, # or both. To learn which resources support conditions in their IAM policies, # see the [IAM documentation](https://cloud.google.com/iam/help/conditions/ # resource-policies). **JSON example:** ` "bindings": [ ` "role": "roles/ # resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", " # group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@ # appspot.gserviceaccount.com" ] `, ` "role": "roles/resourcemanager. # organizationViewer", "members": [ "user:eve@example.com" ], "condition": ` " # title": "expirable access", "description": "Does not grant access after Sep # 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", ` # ` ], "etag": "BwWWja0YfJA=", "version": 3 ` **YAML example:** bindings: - # members: - user:mike@example.com - group:admins@example.com - domain:google. # com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/ # resourcemanager.organizationAdmin - members: - user:eve@example.com role: # roles/resourcemanager.organizationViewer condition: title: expirable access # description: Does not grant access after Sep 2020 expression: request.time < # timestamp('2020-10-01T00:00:00.000Z') - etag: BwWWja0YfJA= - version: 3 For a # description of IAM and its features, see the [IAM documentation](https://cloud. # google.com/iam/docs/). # Corresponds to the JSON property `policy` # @return [Google::Apis::MlV1::GoogleIamV1Policy] attr_accessor :policy # OPTIONAL: A FieldMask specifying which fields of the policy to modify. Only # the fields in the mask will be modified. If no mask is provided, the following # default mask is used: `paths: "bindings, etag"` # Corresponds to the JSON property `updateMask` # @return [String] attr_accessor :update_mask def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @policy = args[:policy] if args.key?(:policy) @update_mask = args[:update_mask] if args.key?(:update_mask) end end # Request message for `TestIamPermissions` method. class GoogleIamV1TestIamPermissionsRequest include Google::Apis::Core::Hashable # The set of permissions to check for the `resource`. Permissions with wildcards # (such as '*' or 'storage.*') are not allowed. For more information see [IAM # Overview](https://cloud.google.com/iam/docs/overview#permissions). # Corresponds to the JSON property `permissions` # @return [Array] attr_accessor :permissions def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @permissions = args[:permissions] if args.key?(:permissions) end end # Response message for `TestIamPermissions` method. class GoogleIamV1TestIamPermissionsResponse include Google::Apis::Core::Hashable # A subset of `TestPermissionsRequest.permissions` that the caller is allowed. # Corresponds to the JSON property `permissions` # @return [Array] attr_accessor :permissions def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @permissions = args[:permissions] if args.key?(:permissions) end end # The response message for Operations.ListOperations. class GoogleLongrunningListOperationsResponse include Google::Apis::Core::Hashable # The standard List next-page token. # Corresponds to the JSON property `nextPageToken` # @return [String] attr_accessor :next_page_token # A list of operations that matches the specified filter in the request. # Corresponds to the JSON property `operations` # @return [Array] attr_accessor :operations def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @next_page_token = args[:next_page_token] if args.key?(:next_page_token) @operations = args[:operations] if args.key?(:operations) end end # This resource represents a long-running operation that is the result of a # network API call. class GoogleLongrunningOperation include Google::Apis::Core::Hashable # If the value is `false`, it means the operation is still in progress. If `true` # , the operation is completed, and either `error` or `response` is available. # Corresponds to the JSON property `done` # @return [Boolean] attr_accessor :done alias_method :done?, :done # The `Status` type defines a logical error model that is suitable for different # programming environments, including REST APIs and RPC APIs. It is used by [ # gRPC](https://github.com/grpc). Each `Status` message contains three pieces of # data: error code, error message, and error details. You can find out more # about this error model and how to work with it in the [API Design Guide](https: # //cloud.google.com/apis/design/errors). # Corresponds to the JSON property `error` # @return [Google::Apis::MlV1::GoogleRpcStatus] attr_accessor :error # Service-specific metadata associated with the operation. It typically contains # progress information and common metadata such as create time. Some services # might not provide such metadata. Any method that returns a long-running # operation should document the metadata type, if any. # Corresponds to the JSON property `metadata` # @return [Hash] attr_accessor :metadata # The server-assigned name, which is only unique within the same service that # originally returns it. If you use the default HTTP mapping, the `name` should # be a resource name ending with `operations/`unique_id``. # Corresponds to the JSON property `name` # @return [String] attr_accessor :name # The normal response of the operation in case of success. If the original # method returns no data on success, such as `Delete`, the response is `google. # protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, # the response should be the resource. For other methods, the response should # have the type `XxxResponse`, where `Xxx` is the original method name. For # example, if the original method name is `TakeSnapshot()`, the inferred # response type is `TakeSnapshotResponse`. # Corresponds to the JSON property `response` # @return [Hash] attr_accessor :response def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @done = args[:done] if args.key?(:done) @error = args[:error] if args.key?(:error) @metadata = args[:metadata] if args.key?(:metadata) @name = args[:name] if args.key?(:name) @response = args[:response] if args.key?(:response) end end # A generic empty message that you can re-use to avoid defining duplicated empty # messages in your APIs. A typical example is to use it as the request or the # response type of an API method. For instance: service Foo ` rpc Bar(google. # protobuf.Empty) returns (google.protobuf.Empty); ` The JSON representation for # `Empty` is empty JSON object ````. class GoogleProtobufEmpty include Google::Apis::Core::Hashable def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) end end # The `Status` type defines a logical error model that is suitable for different # programming environments, including REST APIs and RPC APIs. It is used by [ # gRPC](https://github.com/grpc). Each `Status` message contains three pieces of # data: error code, error message, and error details. You can find out more # about this error model and how to work with it in the [API Design Guide](https: # //cloud.google.com/apis/design/errors). class GoogleRpcStatus include Google::Apis::Core::Hashable # The status code, which should be an enum value of google.rpc.Code. # Corresponds to the JSON property `code` # @return [Fixnum] attr_accessor :code # A list of messages that carry the error details. There is a common set of # message types for APIs to use. # Corresponds to the JSON property `details` # @return [Array>] attr_accessor :details # A developer-facing error message, which should be in English. Any user-facing # error message should be localized and sent in the google.rpc.Status.details # field, or localized by the client. # Corresponds to the JSON property `message` # @return [String] attr_accessor :message def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @code = args[:code] if args.key?(:code) @details = args[:details] if args.key?(:details) @message = args[:message] if args.key?(:message) end end # Represents a textual expression in the Common Expression Language (CEL) syntax. # CEL is a C-like expression language. The syntax and semantics of CEL are # documented at https://github.com/google/cel-spec. Example (Comparison): title: # "Summary size limit" description: "Determines if a summary is less than 100 # chars" expression: "document.summary.size() < 100" Example (Equality): title: " # Requestor is owner" description: "Determines if requestor is the document # owner" expression: "document.owner == request.auth.claims.email" Example ( # Logic): title: "Public documents" description: "Determine whether the document # should be publicly visible" expression: "document.type != 'private' && # document.type != 'internal'" Example (Data Manipulation): title: "Notification # string" description: "Create a notification string with a timestamp." # expression: "'New message received at ' + string(document.create_time)" The # exact variables and functions that may be referenced within an expression are # determined by the service that evaluates it. See the service documentation for # additional information. class GoogleTypeExpr include Google::Apis::Core::Hashable # Optional. Description of the expression. This is a longer text which describes # the expression, e.g. when hovered over it in a UI. # Corresponds to the JSON property `description` # @return [String] attr_accessor :description # Textual representation of an expression in Common Expression Language syntax. # Corresponds to the JSON property `expression` # @return [String] attr_accessor :expression # Optional. String indicating the location of the expression for error reporting, # e.g. a file name and a position in the file. # Corresponds to the JSON property `location` # @return [String] attr_accessor :location # Optional. Title for the expression, i.e. a short string describing its purpose. # This can be used e.g. in UIs which allow to enter the expression. # Corresponds to the JSON property `title` # @return [String] attr_accessor :title def initialize(**args) update!(**args) end # Update properties of this object def update!(**args) @description = args[:description] if args.key?(:description) @expression = args[:expression] if args.key?(:expression) @location = args[:location] if args.key?(:location) @title = args[:title] if args.key?(:title) end end end end end