google-api-ruby-client/generated/google/apis/spanner_v1/classes.rb

3295 lines
149 KiB
Ruby

# Copyright 2015 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
require 'date'
require 'google/apis/core/base_service'
require 'google/apis/core/json_representation'
require 'google/apis/core/hashable'
require 'google/apis/errors'
module Google
module Apis
module SpannerV1
# Metadata about a ResultSet or PartialResultSet.
class ResultSetMetadata
include Google::Apis::Core::Hashable
# `StructType` defines the fields of a STRUCT type.
# Corresponds to the JSON property `rowType`
# @return [Google::Apis::SpannerV1::StructType]
attr_accessor :row_type
# A transaction.
# Corresponds to the JSON property `transaction`
# @return [Google::Apis::SpannerV1::Transaction]
attr_accessor :transaction
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@row_type = args[:row_type] if args.key?(:row_type)
@transaction = args[:transaction] if args.key?(:transaction)
end
end
# This message is used to select the transaction in which a
# Read or
# ExecuteSql call runs.
# See TransactionOptions for more information about transactions.
class TransactionSelector
include Google::Apis::Core::Hashable
# # Transactions
# Each session can have at most one active transaction at a time. After the
# active transaction is completed, the session can immediately be
# re-used for the next transaction. It is not necessary to create a
# new session for each transaction.
# # Transaction Modes
# Cloud Spanner supports two transaction modes:
# 1. Locking read-write. This type of transaction is the only way
# to write data into Cloud Spanner. These transactions rely on
# pessimistic locking and, if necessary, two-phase commit.
# Locking read-write transactions may abort, requiring the
# application to retry.
# 2. Snapshot read-only. This transaction type provides guaranteed
# consistency across several reads, but does not allow
# writes. Snapshot read-only transactions can be configured to
# read at timestamps in the past. Snapshot read-only
# transactions do not need to be committed.
# For transactions that only read, snapshot read-only transactions
# provide simpler semantics and are almost always faster. In
# particular, read-only transactions do not take locks, so they do
# not conflict with read-write transactions. As a consequence of not
# taking locks, they also do not abort, so retry loops are not needed.
# Transactions may only read/write data in a single database. They
# may, however, read/write data in different tables within that
# database.
# ## Locking Read-Write Transactions
# Locking transactions may be used to atomically read-modify-write
# data anywhere in a database. This type of transaction is externally
# consistent.
# Clients should attempt to minimize the amount of time a transaction
# is active. Faster transactions commit with higher probability
# and cause less contention. Cloud Spanner attempts to keep read locks
# active as long as the transaction continues to do reads, and the
# transaction has not been terminated by
# Commit or
# Rollback. Long periods of
# inactivity at the client may cause Cloud Spanner to release a
# transaction's locks and abort it.
# Reads performed within a transaction acquire locks on the data
# being read. Writes can only be done at commit time, after all reads
# have been completed.
# Conceptually, a read-write transaction consists of zero or more
# reads or SQL queries followed by
# Commit. At any time before
# Commit, the client can send a
# Rollback request to abort the
# transaction.
# ### Semantics
# Cloud Spanner can commit the transaction if all read locks it acquired
# are still valid at commit time, and it is able to acquire write
# locks for all writes. Cloud Spanner can abort the transaction for any
# reason. If a commit attempt returns `ABORTED`, Cloud Spanner guarantees
# that the transaction has not modified any user data in Cloud Spanner.
# Unless the transaction commits, Cloud Spanner makes no guarantees about
# how long the transaction's locks were held for. It is an error to
# use Cloud Spanner locks for any sort of mutual exclusion other than
# between Cloud Spanner transactions themselves.
# ### Retrying Aborted Transactions
# When a transaction aborts, the application can choose to retry the
# whole transaction again. To maximize the chances of successfully
# committing the retry, the client should execute the retry in the
# same session as the original attempt. The original session's lock
# priority increases with each consecutive abort, meaning that each
# attempt has a slightly better chance of success than the previous.
# Under some circumstances (e.g., many transactions attempting to
# modify the same row(s)), a transaction can abort many times in a
# short period before successfully committing. Thus, it is not a good
# idea to cap the number of retries a transaction can attempt;
# instead, it is better to limit the total amount of wall time spent
# retrying.
# ### Idle Transactions
# A transaction is considered idle if it has no outstanding reads or
# SQL queries and has not started a read or SQL query within the last 10
# seconds. Idle transactions can be aborted by Cloud Spanner so that they
# don't hold on to locks indefinitely. In that case, the commit will
# fail with error `ABORTED`.
# If this behavior is undesirable, periodically executing a simple
# SQL query in the transaction (e.g., `SELECT 1`) prevents the
# transaction from becoming idle.
# ## Snapshot Read-Only Transactions
# Snapshot read-only transactions provides a simpler method than
# locking read-write transactions for doing several consistent
# reads. However, this type of transaction does not support writes.
# Snapshot transactions do not take locks. Instead, they work by
# choosing a Cloud Spanner timestamp, then executing all reads at that
# timestamp. Since they do not acquire locks, they do not block
# concurrent read-write transactions.
# Unlike locking read-write transactions, snapshot read-only
# transactions never abort. They can fail if the chosen read
# timestamp is garbage collected; however, the default garbage
# collection policy is generous enough that most applications do not
# need to worry about this in practice.
# Snapshot read-only transactions do not need to call
# Commit or
# Rollback (and in fact are not
# permitted to do so).
# To execute a snapshot transaction, the client specifies a timestamp
# bound, which tells Cloud Spanner how to choose a read timestamp.
# The types of timestamp bound are:
# - Strong (the default).
# - Bounded staleness.
# - Exact staleness.
# If the Cloud Spanner database to be read is geographically distributed,
# stale read-only transactions can execute more quickly than strong
# or read-write transaction, because they are able to execute far
# from the leader replica.
# Each type of timestamp bound is discussed in detail below.
# ### Strong
# Strong reads are guaranteed to see the effects of all transactions
# that have committed before the start of the read. Furthermore, all
# rows yielded by a single read are consistent with each other -- if
# any part of the read observes a transaction, all parts of the read
# see the transaction.
# Strong reads are not repeatable: two consecutive strong read-only
# transactions might return inconsistent results if there are
# concurrent writes. If consistency across reads is required, the
# reads should be executed within a transaction or at an exact read
# timestamp.
# See TransactionOptions.ReadOnly.strong.
# ### Exact Staleness
# These timestamp bounds execute reads at a user-specified
# timestamp. Reads at a timestamp are guaranteed to see a consistent
# prefix of the global transaction history: they observe
# modifications done by all transactions with a commit timestamp <=
# the read timestamp, and observe none of the modifications done by
# transactions with a larger commit timestamp. They will block until
# all conflicting transactions that may be assigned commit timestamps
# <= the read timestamp have finished.
# The timestamp can either be expressed as an absolute Cloud Spanner commit
# timestamp or a staleness relative to the current time.
# These modes do not require a "negotiation phase" to pick a
# timestamp. As a result, they execute slightly faster than the
# equivalent boundedly stale concurrency modes. On the other hand,
# boundedly stale reads usually return fresher results.
# See TransactionOptions.ReadOnly.read_timestamp and
# TransactionOptions.ReadOnly.exact_staleness.
# ### Bounded Staleness
# Bounded staleness modes allow Cloud Spanner to pick the read timestamp,
# subject to a user-provided staleness bound. Cloud Spanner chooses the
# newest timestamp within the staleness bound that allows execution
# of the reads at the closest available replica without blocking.
# All rows yielded are consistent with each other -- if any part of
# the read observes a transaction, all parts of the read see the
# transaction. Boundedly stale reads are not repeatable: two stale
# reads, even if they use the same staleness bound, can execute at
# different timestamps and thus return inconsistent results.
# Boundedly stale reads execute in two phases: the first phase
# negotiates a timestamp among all replicas needed to serve the
# read. In the second phase, reads are executed at the negotiated
# timestamp.
# As a result of the two phase execution, bounded staleness reads are
# usually a little slower than comparable exact staleness
# reads. However, they are typically able to return fresher
# results, and are more likely to execute at the closest replica.
# Because the timestamp negotiation requires up-front knowledge of
# which rows will be read, it can only be used with single-use
# read-only transactions.
# See TransactionOptions.ReadOnly.max_staleness and
# TransactionOptions.ReadOnly.min_read_timestamp.
# ### Old Read Timestamps and Garbage Collection
# Cloud Spanner continuously garbage collects deleted and overwritten data
# in the background to reclaim storage space. This process is known
# as "version GC". By default, version GC reclaims versions after they
# are one hour old. Because of this, Cloud Spanner cannot perform reads
# at read timestamps more than one hour in the past. This
# restriction also applies to in-progress reads and/or SQL queries whose
# timestamp become too old while executing. Reads and SQL queries with
# too-old read timestamps fail with the error `FAILED_PRECONDITION`.
# Corresponds to the JSON property `singleUse`
# @return [Google::Apis::SpannerV1::TransactionOptions]
attr_accessor :single_use
# # Transactions
# Each session can have at most one active transaction at a time. After the
# active transaction is completed, the session can immediately be
# re-used for the next transaction. It is not necessary to create a
# new session for each transaction.
# # Transaction Modes
# Cloud Spanner supports two transaction modes:
# 1. Locking read-write. This type of transaction is the only way
# to write data into Cloud Spanner. These transactions rely on
# pessimistic locking and, if necessary, two-phase commit.
# Locking read-write transactions may abort, requiring the
# application to retry.
# 2. Snapshot read-only. This transaction type provides guaranteed
# consistency across several reads, but does not allow
# writes. Snapshot read-only transactions can be configured to
# read at timestamps in the past. Snapshot read-only
# transactions do not need to be committed.
# For transactions that only read, snapshot read-only transactions
# provide simpler semantics and are almost always faster. In
# particular, read-only transactions do not take locks, so they do
# not conflict with read-write transactions. As a consequence of not
# taking locks, they also do not abort, so retry loops are not needed.
# Transactions may only read/write data in a single database. They
# may, however, read/write data in different tables within that
# database.
# ## Locking Read-Write Transactions
# Locking transactions may be used to atomically read-modify-write
# data anywhere in a database. This type of transaction is externally
# consistent.
# Clients should attempt to minimize the amount of time a transaction
# is active. Faster transactions commit with higher probability
# and cause less contention. Cloud Spanner attempts to keep read locks
# active as long as the transaction continues to do reads, and the
# transaction has not been terminated by
# Commit or
# Rollback. Long periods of
# inactivity at the client may cause Cloud Spanner to release a
# transaction's locks and abort it.
# Reads performed within a transaction acquire locks on the data
# being read. Writes can only be done at commit time, after all reads
# have been completed.
# Conceptually, a read-write transaction consists of zero or more
# reads or SQL queries followed by
# Commit. At any time before
# Commit, the client can send a
# Rollback request to abort the
# transaction.
# ### Semantics
# Cloud Spanner can commit the transaction if all read locks it acquired
# are still valid at commit time, and it is able to acquire write
# locks for all writes. Cloud Spanner can abort the transaction for any
# reason. If a commit attempt returns `ABORTED`, Cloud Spanner guarantees
# that the transaction has not modified any user data in Cloud Spanner.
# Unless the transaction commits, Cloud Spanner makes no guarantees about
# how long the transaction's locks were held for. It is an error to
# use Cloud Spanner locks for any sort of mutual exclusion other than
# between Cloud Spanner transactions themselves.
# ### Retrying Aborted Transactions
# When a transaction aborts, the application can choose to retry the
# whole transaction again. To maximize the chances of successfully
# committing the retry, the client should execute the retry in the
# same session as the original attempt. The original session's lock
# priority increases with each consecutive abort, meaning that each
# attempt has a slightly better chance of success than the previous.
# Under some circumstances (e.g., many transactions attempting to
# modify the same row(s)), a transaction can abort many times in a
# short period before successfully committing. Thus, it is not a good
# idea to cap the number of retries a transaction can attempt;
# instead, it is better to limit the total amount of wall time spent
# retrying.
# ### Idle Transactions
# A transaction is considered idle if it has no outstanding reads or
# SQL queries and has not started a read or SQL query within the last 10
# seconds. Idle transactions can be aborted by Cloud Spanner so that they
# don't hold on to locks indefinitely. In that case, the commit will
# fail with error `ABORTED`.
# If this behavior is undesirable, periodically executing a simple
# SQL query in the transaction (e.g., `SELECT 1`) prevents the
# transaction from becoming idle.
# ## Snapshot Read-Only Transactions
# Snapshot read-only transactions provides a simpler method than
# locking read-write transactions for doing several consistent
# reads. However, this type of transaction does not support writes.
# Snapshot transactions do not take locks. Instead, they work by
# choosing a Cloud Spanner timestamp, then executing all reads at that
# timestamp. Since they do not acquire locks, they do not block
# concurrent read-write transactions.
# Unlike locking read-write transactions, snapshot read-only
# transactions never abort. They can fail if the chosen read
# timestamp is garbage collected; however, the default garbage
# collection policy is generous enough that most applications do not
# need to worry about this in practice.
# Snapshot read-only transactions do not need to call
# Commit or
# Rollback (and in fact are not
# permitted to do so).
# To execute a snapshot transaction, the client specifies a timestamp
# bound, which tells Cloud Spanner how to choose a read timestamp.
# The types of timestamp bound are:
# - Strong (the default).
# - Bounded staleness.
# - Exact staleness.
# If the Cloud Spanner database to be read is geographically distributed,
# stale read-only transactions can execute more quickly than strong
# or read-write transaction, because they are able to execute far
# from the leader replica.
# Each type of timestamp bound is discussed in detail below.
# ### Strong
# Strong reads are guaranteed to see the effects of all transactions
# that have committed before the start of the read. Furthermore, all
# rows yielded by a single read are consistent with each other -- if
# any part of the read observes a transaction, all parts of the read
# see the transaction.
# Strong reads are not repeatable: two consecutive strong read-only
# transactions might return inconsistent results if there are
# concurrent writes. If consistency across reads is required, the
# reads should be executed within a transaction or at an exact read
# timestamp.
# See TransactionOptions.ReadOnly.strong.
# ### Exact Staleness
# These timestamp bounds execute reads at a user-specified
# timestamp. Reads at a timestamp are guaranteed to see a consistent
# prefix of the global transaction history: they observe
# modifications done by all transactions with a commit timestamp <=
# the read timestamp, and observe none of the modifications done by
# transactions with a larger commit timestamp. They will block until
# all conflicting transactions that may be assigned commit timestamps
# <= the read timestamp have finished.
# The timestamp can either be expressed as an absolute Cloud Spanner commit
# timestamp or a staleness relative to the current time.
# These modes do not require a "negotiation phase" to pick a
# timestamp. As a result, they execute slightly faster than the
# equivalent boundedly stale concurrency modes. On the other hand,
# boundedly stale reads usually return fresher results.
# See TransactionOptions.ReadOnly.read_timestamp and
# TransactionOptions.ReadOnly.exact_staleness.
# ### Bounded Staleness
# Bounded staleness modes allow Cloud Spanner to pick the read timestamp,
# subject to a user-provided staleness bound. Cloud Spanner chooses the
# newest timestamp within the staleness bound that allows execution
# of the reads at the closest available replica without blocking.
# All rows yielded are consistent with each other -- if any part of
# the read observes a transaction, all parts of the read see the
# transaction. Boundedly stale reads are not repeatable: two stale
# reads, even if they use the same staleness bound, can execute at
# different timestamps and thus return inconsistent results.
# Boundedly stale reads execute in two phases: the first phase
# negotiates a timestamp among all replicas needed to serve the
# read. In the second phase, reads are executed at the negotiated
# timestamp.
# As a result of the two phase execution, bounded staleness reads are
# usually a little slower than comparable exact staleness
# reads. However, they are typically able to return fresher
# results, and are more likely to execute at the closest replica.
# Because the timestamp negotiation requires up-front knowledge of
# which rows will be read, it can only be used with single-use
# read-only transactions.
# See TransactionOptions.ReadOnly.max_staleness and
# TransactionOptions.ReadOnly.min_read_timestamp.
# ### Old Read Timestamps and Garbage Collection
# Cloud Spanner continuously garbage collects deleted and overwritten data
# in the background to reclaim storage space. This process is known
# as "version GC". By default, version GC reclaims versions after they
# are one hour old. Because of this, Cloud Spanner cannot perform reads
# at read timestamps more than one hour in the past. This
# restriction also applies to in-progress reads and/or SQL queries whose
# timestamp become too old while executing. Reads and SQL queries with
# too-old read timestamps fail with the error `FAILED_PRECONDITION`.
# Corresponds to the JSON property `begin`
# @return [Google::Apis::SpannerV1::TransactionOptions]
attr_accessor :begin
# Execute the read or SQL query in a previously-started transaction.
# Corresponds to the JSON property `id`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :id
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@single_use = args[:single_use] if args.key?(:single_use)
@begin = args[:begin] if args.key?(:begin)
@id = args[:id] if args.key?(:id)
end
end
# `KeySet` defines a collection of Cloud Spanner keys and/or key ranges. All
# the keys are expected to be in the same table or index. The keys need
# not be sorted in any particular way.
# If the same key is specified multiple times in the set (for example
# if two ranges, two keys, or a key and a range overlap), Cloud Spanner
# behaves as if the key were only specified once.
class KeySet
include Google::Apis::Core::Hashable
# A list of key ranges. See KeyRange for more information about
# key range specifications.
# Corresponds to the JSON property `ranges`
# @return [Array<Google::Apis::SpannerV1::KeyRange>]
attr_accessor :ranges
# A list of specific keys. Entries in `keys` should have exactly as
# many elements as there are columns in the primary or index key
# with which this `KeySet` is used. Individual key values are
# encoded as described here.
# Corresponds to the JSON property `keys`
# @return [Array<Array<Object>>]
attr_accessor :keys
# For convenience `all` can be set to `true` to indicate that this
# `KeySet` matches all keys in the table or index. Note that any keys
# specified in `keys` or `ranges` are only yielded once.
# Corresponds to the JSON property `all`
# @return [Boolean]
attr_accessor :all
alias_method :all?, :all
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@ranges = args[:ranges] if args.key?(:ranges)
@keys = args[:keys] if args.key?(:keys)
@all = args[:all] if args.key?(:all)
end
end
# A modification to one or more Cloud Spanner rows. Mutations can be
# applied to a Cloud Spanner database by sending them in a
# Commit call.
class Mutation
include Google::Apis::Core::Hashable
# Arguments to insert, update, insert_or_update, and
# replace operations.
# Corresponds to the JSON property `update`
# @return [Google::Apis::SpannerV1::Write]
attr_accessor :update
# Arguments to insert, update, insert_or_update, and
# replace operations.
# Corresponds to the JSON property `replace`
# @return [Google::Apis::SpannerV1::Write]
attr_accessor :replace
# Arguments to delete operations.
# Corresponds to the JSON property `delete`
# @return [Google::Apis::SpannerV1::Delete]
attr_accessor :delete
# Arguments to insert, update, insert_or_update, and
# replace operations.
# Corresponds to the JSON property `insert`
# @return [Google::Apis::SpannerV1::Write]
attr_accessor :insert
# Arguments to insert, update, insert_or_update, and
# replace operations.
# Corresponds to the JSON property `insertOrUpdate`
# @return [Google::Apis::SpannerV1::Write]
attr_accessor :insert_or_update
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@update = args[:update] if args.key?(:update)
@replace = args[:replace] if args.key?(:replace)
@delete = args[:delete] if args.key?(:delete)
@insert = args[:insert] if args.key?(:insert)
@insert_or_update = args[:insert_or_update] if args.key?(:insert_or_update)
end
end
# The response for GetDatabaseDdl.
class GetDatabaseDdlResponse
include Google::Apis::Core::Hashable
# A list of formatted DDL statements defining the schema of the database
# specified in the request.
# Corresponds to the JSON property `statements`
# @return [Array<String>]
attr_accessor :statements
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@statements = args[:statements] if args.key?(:statements)
end
end
# A Cloud Spanner database.
class Database
include Google::Apis::Core::Hashable
# Output only. The current database state.
# Corresponds to the JSON property `state`
# @return [String]
attr_accessor :state
# Required. The name of the database. Values are of the form
# `projects/<project>/instances/<instance>/databases/<database>`,
# where `<database>` is as specified in the `CREATE DATABASE`
# statement. This name can be passed to other API methods to
# identify the database.
# Corresponds to the JSON property `name`
# @return [String]
attr_accessor :name
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@state = args[:state] if args.key?(:state)
@name = args[:name] if args.key?(:name)
end
end
# An isolated set of Cloud Spanner resources on which databases can be hosted.
class Instance
include Google::Apis::Core::Hashable
# Required. The name of the instance's configuration. Values are of the form
# `projects/<project>/instanceConfigs/<configuration>`. See
# also InstanceConfig and
# ListInstanceConfigs.
# Corresponds to the JSON property `config`
# @return [String]
attr_accessor :config
# Output only. The current instance state. For
# CreateInstance, the state must be
# either omitted or set to `CREATING`. For
# UpdateInstance, the state must be
# either omitted or set to `READY`.
# Corresponds to the JSON property `state`
# @return [String]
attr_accessor :state
# Required. A unique identifier for the instance, which cannot be changed
# after the instance is created. Values are of the form
# `projects/<project>/instances/a-z*[a-z0-9]`. The final
# segment of the name must be between 6 and 30 characters in length.
# Corresponds to the JSON property `name`
# @return [String]
attr_accessor :name
# Required. The descriptive name for this instance as it appears in UIs.
# Must be unique per project and between 4 and 30 characters in length.
# Corresponds to the JSON property `displayName`
# @return [String]
attr_accessor :display_name
# Required. The number of nodes allocated to this instance.
# Corresponds to the JSON property `nodeCount`
# @return [Fixnum]
attr_accessor :node_count
# Cloud Labels are a flexible and lightweight mechanism for organizing cloud
# resources into groups that reflect a customer's organizational needs and
# deployment strategies. Cloud Labels can be used to filter collections of
# resources. They can be used to control how resource metrics are aggregated.
# And they can be used as arguments to policy management rules (e.g. route,
# firewall, load balancing, etc.).
# * Label keys must be between 1 and 63 characters long and must conform to
# the following regular expression: `[a-z]([-a-z0-9]*[a-z0-9])?`.
# * Label values must be between 0 and 63 characters long and must conform
# to the regular expression `([a-z]([-a-z0-9]*[a-z0-9])?)?`.
# * No more than 64 labels can be associated with a given resource.
# See https://goo.gl/xmQnxf for more information on and examples of labels.
# If you plan to use labels in your own code, please note that additional
# characters may be allowed in the future. And so you are advised to use an
# internal label representation, such as JSON, which doesn't rely upon
# specific characters being disallowed. For example, representing labels
# as the string: name + "_" + value would prove problematic if we were to
# allow "_" in a future release.
# Corresponds to the JSON property `labels`
# @return [Hash<String,String>]
attr_accessor :labels
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@config = args[:config] if args.key?(:config)
@state = args[:state] if args.key?(:state)
@name = args[:name] if args.key?(:name)
@display_name = args[:display_name] if args.key?(:display_name)
@node_count = args[:node_count] if args.key?(:node_count)
@labels = args[:labels] if args.key?(:labels)
end
end
# Request message for `SetIamPolicy` method.
class SetIamPolicyRequest
include Google::Apis::Core::Hashable
# Defines an Identity and Access Management (IAM) policy. It is used to
# specify access control policies for Cloud Platform resources.
# A `Policy` consists of a list of `bindings`. A `Binding` binds a list of
# `members` to a `role`, where the members can be user accounts, Google groups,
# Google domains, and service accounts. A `role` is a named list of permissions
# defined by IAM.
# **Example**
# `
# "bindings": [
# `
# "role": "roles/owner",
# "members": [
# "user:mike@example.com",
# "group:admins@example.com",
# "domain:google.com",
# "serviceAccount:my-other-app@appspot.gserviceaccount.com",
# ]
# `,
# `
# "role": "roles/viewer",
# "members": ["user:sean@example.com"]
# `
# ]
# `
# For a description of IAM and its features, see the
# [IAM developer's guide](https://cloud.google.com/iam).
# Corresponds to the JSON property `policy`
# @return [Google::Apis::SpannerV1::Policy]
attr_accessor :policy
# OPTIONAL: A FieldMask specifying which fields of the policy to modify. Only
# the fields in the mask will be modified. If no mask is provided, a default
# mask is used:
# paths: "bindings, etag"
# This field is only used by Cloud IAM.
# Corresponds to the JSON property `updateMask`
# @return [String]
attr_accessor :update_mask
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@policy = args[:policy] if args.key?(:policy)
@update_mask = args[:update_mask] if args.key?(:update_mask)
end
end
# The response for ListDatabases.
class ListDatabasesResponse
include Google::Apis::Core::Hashable
# `next_page_token` can be sent in a subsequent
# ListDatabases call to fetch more
# of the matching databases.
# Corresponds to the JSON property `nextPageToken`
# @return [String]
attr_accessor :next_page_token
# Databases that matched the request.
# Corresponds to the JSON property `databases`
# @return [Array<Google::Apis::SpannerV1::Database>]
attr_accessor :databases
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@next_page_token = args[:next_page_token] if args.key?(:next_page_token)
@databases = args[:databases] if args.key?(:databases)
end
end
# The request for Rollback.
class RollbackRequest
include Google::Apis::Core::Hashable
# Required. The transaction to roll back.
# Corresponds to the JSON property `transactionId`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :transaction_id
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@transaction_id = args[:transaction_id] if args.key?(:transaction_id)
end
end
# A transaction.
class Transaction
include Google::Apis::Core::Hashable
# For snapshot read-only transactions, the read timestamp chosen
# for the transaction. Not returned by default: see
# TransactionOptions.ReadOnly.return_read_timestamp.
# Corresponds to the JSON property `readTimestamp`
# @return [String]
attr_accessor :read_timestamp
# `id` may be used to identify the transaction in subsequent
# Read,
# ExecuteSql,
# Commit, or
# Rollback calls.
# Single-use read-only transactions do not have IDs, because
# single-use transactions do not support multiple requests.
# Corresponds to the JSON property `id`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :id
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@read_timestamp = args[:read_timestamp] if args.key?(:read_timestamp)
@id = args[:id] if args.key?(:id)
end
end
# Metadata type for the operation returned by
# UpdateDatabaseDdl.
class UpdateDatabaseDdlMetadata
include Google::Apis::Core::Hashable
# For an update this list contains all the statements. For an
# individual statement, this list contains only that statement.
# Corresponds to the JSON property `statements`
# @return [Array<String>]
attr_accessor :statements
# Reports the commit timestamps of all statements that have
# succeeded so far, where `commit_timestamps[i]` is the commit
# timestamp for the statement `statements[i]`.
# Corresponds to the JSON property `commitTimestamps`
# @return [Array<String>]
attr_accessor :commit_timestamps
# The database being modified.
# Corresponds to the JSON property `database`
# @return [String]
attr_accessor :database
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@statements = args[:statements] if args.key?(:statements)
@commit_timestamps = args[:commit_timestamps] if args.key?(:commit_timestamps)
@database = args[:database] if args.key?(:database)
end
end
# Options for counters
class CounterOptions
include Google::Apis::Core::Hashable
# The metric to update.
# Corresponds to the JSON property `metric`
# @return [String]
attr_accessor :metric
# The field value to attribute.
# Corresponds to the JSON property `field`
# @return [String]
attr_accessor :field
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@metric = args[:metric] if args.key?(:metric)
@field = args[:field] if args.key?(:field)
end
end
# `StructType` defines the fields of a STRUCT type.
class StructType
include Google::Apis::Core::Hashable
# The list of fields that make up this struct. Order is
# significant, because values of this struct type are represented as
# lists, where the order of field values matches the order of
# fields in the StructType. In turn, the order of fields
# matches the order of columns in a read request, or the order of
# fields in the `SELECT` clause of a query.
# Corresponds to the JSON property `fields`
# @return [Array<Google::Apis::SpannerV1::Field>]
attr_accessor :fields
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@fields = args[:fields] if args.key?(:fields)
end
end
# Contains an ordered list of nodes appearing in the query plan.
class QueryPlan
include Google::Apis::Core::Hashable
# The nodes in the query plan. Plan nodes are returned in pre-order starting
# with the plan root. Each PlanNode's `id` corresponds to its index in
# `plan_nodes`.
# Corresponds to the JSON property `planNodes`
# @return [Array<Google::Apis::SpannerV1::PlanNode>]
attr_accessor :plan_nodes
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@plan_nodes = args[:plan_nodes] if args.key?(:plan_nodes)
end
end
# Message representing a single field of a struct.
class Field
include Google::Apis::Core::Hashable
# The name of the field. For reads, this is the column name. For
# SQL queries, it is the column alias (e.g., `"Word"` in the
# query `"SELECT 'hello' AS Word"`), or the column name (e.g.,
# `"ColName"` in the query `"SELECT ColName FROM Table"`). Some
# columns might have an empty name (e.g., !"SELECT
# UPPER(ColName)"`). Note that a query result can contain
# multiple fields with the same name.
# Corresponds to the JSON property `name`
# @return [String]
attr_accessor :name
# `Type` indicates the type of a Cloud Spanner value, as might be stored in a
# table cell or returned from an SQL query.
# Corresponds to the JSON property `type`
# @return [Google::Apis::SpannerV1::Type]
attr_accessor :type
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@name = args[:name] if args.key?(:name)
@type = args[:type] if args.key?(:type)
end
end
# Additional statistics about a ResultSet or PartialResultSet.
class ResultSetStats
include Google::Apis::Core::Hashable
# Contains an ordered list of nodes appearing in the query plan.
# Corresponds to the JSON property `queryPlan`
# @return [Google::Apis::SpannerV1::QueryPlan]
attr_accessor :query_plan
# Aggregated statistics from the execution of the query. Only present when
# the query is profiled. For example, a query could return the statistics as
# follows:
# `
# "rows_returned": "3",
# "elapsed_time": "1.22 secs",
# "cpu_time": "1.19 secs"
# `
# Corresponds to the JSON property `queryStats`
# @return [Hash<String,Object>]
attr_accessor :query_stats
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@query_plan = args[:query_plan] if args.key?(:query_plan)
@query_stats = args[:query_stats] if args.key?(:query_stats)
end
end
# Request message for `TestIamPermissions` method.
class TestIamPermissionsRequest
include Google::Apis::Core::Hashable
# REQUIRED: The set of permissions to check for 'resource'.
# Permissions with wildcards (such as '*', 'spanner.*', 'spanner.instances.*')
# are not allowed.
# Corresponds to the JSON property `permissions`
# @return [Array<String>]
attr_accessor :permissions
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@permissions = args[:permissions] if args.key?(:permissions)
end
end
# The response for Commit.
class CommitResponse
include Google::Apis::Core::Hashable
# The Cloud Spanner timestamp at which the transaction committed.
# Corresponds to the JSON property `commitTimestamp`
# @return [String]
attr_accessor :commit_timestamp
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@commit_timestamp = args[:commit_timestamp] if args.key?(:commit_timestamp)
end
end
# `Type` indicates the type of a Cloud Spanner value, as might be stored in a
# table cell or returned from an SQL query.
class Type
include Google::Apis::Core::Hashable
# `StructType` defines the fields of a STRUCT type.
# Corresponds to the JSON property `structType`
# @return [Google::Apis::SpannerV1::StructType]
attr_accessor :struct_type
# `Type` indicates the type of a Cloud Spanner value, as might be stored in a
# table cell or returned from an SQL query.
# Corresponds to the JSON property `arrayElementType`
# @return [Google::Apis::SpannerV1::Type]
attr_accessor :array_element_type
# Required. The TypeCode for this type.
# Corresponds to the JSON property `code`
# @return [String]
attr_accessor :code
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@struct_type = args[:struct_type] if args.key?(:struct_type)
@array_element_type = args[:array_element_type] if args.key?(:array_element_type)
@code = args[:code] if args.key?(:code)
end
end
# Node information for nodes appearing in a QueryPlan.plan_nodes.
class PlanNode
include Google::Apis::Core::Hashable
# Attributes relevant to the node contained in a group of key-value pairs.
# For example, a Parameter Reference node could have the following
# information in its metadata:
# `
# "parameter_reference": "param1",
# "parameter_type": "array"
# `
# Corresponds to the JSON property `metadata`
# @return [Hash<String,Object>]
attr_accessor :metadata
# The execution statistics associated with the node, contained in a group of
# key-value pairs. Only present if the plan was returned as a result of a
# profile query. For example, number of executions, number of rows/time per
# execution etc.
# Corresponds to the JSON property `executionStats`
# @return [Hash<String,Object>]
attr_accessor :execution_stats
# Condensed representation of a node and its subtree. Only present for
# `SCALAR` PlanNode(s).
# Corresponds to the JSON property `shortRepresentation`
# @return [Google::Apis::SpannerV1::ShortRepresentation]
attr_accessor :short_representation
# The `PlanNode`'s index in node list.
# Corresponds to the JSON property `index`
# @return [Fixnum]
attr_accessor :index
# The display name for the node.
# Corresponds to the JSON property `displayName`
# @return [String]
attr_accessor :display_name
# Used to determine the type of node. May be needed for visualizing
# different kinds of nodes differently. For example, If the node is a
# SCALAR node, it will have a condensed representation
# which can be used to directly embed a description of the node in its
# parent.
# Corresponds to the JSON property `kind`
# @return [String]
attr_accessor :kind
# List of child node `index`es and their relationship to this parent.
# Corresponds to the JSON property `childLinks`
# @return [Array<Google::Apis::SpannerV1::ChildLink>]
attr_accessor :child_links
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@metadata = args[:metadata] if args.key?(:metadata)
@execution_stats = args[:execution_stats] if args.key?(:execution_stats)
@short_representation = args[:short_representation] if args.key?(:short_representation)
@index = args[:index] if args.key?(:index)
@display_name = args[:display_name] if args.key?(:display_name)
@kind = args[:kind] if args.key?(:kind)
@child_links = args[:child_links] if args.key?(:child_links)
end
end
# Metadata type for the operation returned by
# CreateInstance.
class CreateInstanceMetadata
include Google::Apis::Core::Hashable
# The time at which this operation was cancelled. If set, this operation is
# in the process of undoing itself (which is guaranteed to succeed) and
# cannot be cancelled again.
# Corresponds to the JSON property `cancelTime`
# @return [String]
attr_accessor :cancel_time
# The time at which this operation failed or was completed successfully.
# Corresponds to the JSON property `endTime`
# @return [String]
attr_accessor :end_time
# An isolated set of Cloud Spanner resources on which databases can be hosted.
# Corresponds to the JSON property `instance`
# @return [Google::Apis::SpannerV1::Instance]
attr_accessor :instance
# The time at which the
# CreateInstance request was
# received.
# Corresponds to the JSON property `startTime`
# @return [String]
attr_accessor :start_time
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@cancel_time = args[:cancel_time] if args.key?(:cancel_time)
@end_time = args[:end_time] if args.key?(:end_time)
@instance = args[:instance] if args.key?(:instance)
@start_time = args[:start_time] if args.key?(:start_time)
end
end
# Specifies the audit configuration for a service.
# It consists of which permission types are logged, and what identities, if
# any, are exempted from logging.
# An AuditConifg must have one or more AuditLogConfigs.
class AuditConfig
include Google::Apis::Core::Hashable
# Specifies the identities that are exempted from "data access" audit
# logging for the `service` specified above.
# Follows the same format of Binding.members.
# This field is deprecated in favor of per-permission-type exemptions.
# Corresponds to the JSON property `exemptedMembers`
# @return [Array<String>]
attr_accessor :exempted_members
# Specifies a service that will be enabled for audit logging.
# For example, `resourcemanager`, `storage`, `compute`.
# `allServices` is a special value that covers all services.
# Corresponds to the JSON property `service`
# @return [String]
attr_accessor :service
# The configuration for logging of each type of permission.
# Next ID: 4
# Corresponds to the JSON property `auditLogConfigs`
# @return [Array<Google::Apis::SpannerV1::AuditLogConfig>]
attr_accessor :audit_log_configs
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@exempted_members = args[:exempted_members] if args.key?(:exempted_members)
@service = args[:service] if args.key?(:service)
@audit_log_configs = args[:audit_log_configs] if args.key?(:audit_log_configs)
end
end
# Metadata associated with a parent-child relationship appearing in a
# PlanNode.
class ChildLink
include Google::Apis::Core::Hashable
# The type of the link. For example, in Hash Joins this could be used to
# distinguish between the build child and the probe child, or in the case
# of the child being an output variable, to represent the tag associated
# with the output variable.
# Corresponds to the JSON property `type`
# @return [String]
attr_accessor :type
# The node to which the link points.
# Corresponds to the JSON property `childIndex`
# @return [Fixnum]
attr_accessor :child_index
# Only present if the child node is SCALAR and corresponds
# to an output variable of the parent node. The field carries the name of
# the output variable.
# For example, a `TableScan` operator that reads rows from a table will
# have child links to the `SCALAR` nodes representing the output variables
# created for each column that is read by the operator. The corresponding
# `variable` fields will be set to the variable names assigned to the
# columns.
# Corresponds to the JSON property `variable`
# @return [String]
attr_accessor :variable
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@type = args[:type] if args.key?(:type)
@child_index = args[:child_index] if args.key?(:child_index)
@variable = args[:variable] if args.key?(:variable)
end
end
# Write a Cloud Audit log
class CloudAuditOptions
include Google::Apis::Core::Hashable
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
end
end
# Arguments to delete operations.
class Delete
include Google::Apis::Core::Hashable
# Required. The table whose rows will be deleted.
# Corresponds to the JSON property `table`
# @return [String]
attr_accessor :table
# `KeySet` defines a collection of Cloud Spanner keys and/or key ranges. All
# the keys are expected to be in the same table or index. The keys need
# not be sorted in any particular way.
# If the same key is specified multiple times in the set (for example
# if two ranges, two keys, or a key and a range overlap), Cloud Spanner
# behaves as if the key were only specified once.
# Corresponds to the JSON property `keySet`
# @return [Google::Apis::SpannerV1::KeySet]
attr_accessor :key_set
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@table = args[:table] if args.key?(:table)
@key_set = args[:key_set] if args.key?(:key_set)
end
end
# The request for Commit.
class CommitRequest
include Google::Apis::Core::Hashable
# # Transactions
# Each session can have at most one active transaction at a time. After the
# active transaction is completed, the session can immediately be
# re-used for the next transaction. It is not necessary to create a
# new session for each transaction.
# # Transaction Modes
# Cloud Spanner supports two transaction modes:
# 1. Locking read-write. This type of transaction is the only way
# to write data into Cloud Spanner. These transactions rely on
# pessimistic locking and, if necessary, two-phase commit.
# Locking read-write transactions may abort, requiring the
# application to retry.
# 2. Snapshot read-only. This transaction type provides guaranteed
# consistency across several reads, but does not allow
# writes. Snapshot read-only transactions can be configured to
# read at timestamps in the past. Snapshot read-only
# transactions do not need to be committed.
# For transactions that only read, snapshot read-only transactions
# provide simpler semantics and are almost always faster. In
# particular, read-only transactions do not take locks, so they do
# not conflict with read-write transactions. As a consequence of not
# taking locks, they also do not abort, so retry loops are not needed.
# Transactions may only read/write data in a single database. They
# may, however, read/write data in different tables within that
# database.
# ## Locking Read-Write Transactions
# Locking transactions may be used to atomically read-modify-write
# data anywhere in a database. This type of transaction is externally
# consistent.
# Clients should attempt to minimize the amount of time a transaction
# is active. Faster transactions commit with higher probability
# and cause less contention. Cloud Spanner attempts to keep read locks
# active as long as the transaction continues to do reads, and the
# transaction has not been terminated by
# Commit or
# Rollback. Long periods of
# inactivity at the client may cause Cloud Spanner to release a
# transaction's locks and abort it.
# Reads performed within a transaction acquire locks on the data
# being read. Writes can only be done at commit time, after all reads
# have been completed.
# Conceptually, a read-write transaction consists of zero or more
# reads or SQL queries followed by
# Commit. At any time before
# Commit, the client can send a
# Rollback request to abort the
# transaction.
# ### Semantics
# Cloud Spanner can commit the transaction if all read locks it acquired
# are still valid at commit time, and it is able to acquire write
# locks for all writes. Cloud Spanner can abort the transaction for any
# reason. If a commit attempt returns `ABORTED`, Cloud Spanner guarantees
# that the transaction has not modified any user data in Cloud Spanner.
# Unless the transaction commits, Cloud Spanner makes no guarantees about
# how long the transaction's locks were held for. It is an error to
# use Cloud Spanner locks for any sort of mutual exclusion other than
# between Cloud Spanner transactions themselves.
# ### Retrying Aborted Transactions
# When a transaction aborts, the application can choose to retry the
# whole transaction again. To maximize the chances of successfully
# committing the retry, the client should execute the retry in the
# same session as the original attempt. The original session's lock
# priority increases with each consecutive abort, meaning that each
# attempt has a slightly better chance of success than the previous.
# Under some circumstances (e.g., many transactions attempting to
# modify the same row(s)), a transaction can abort many times in a
# short period before successfully committing. Thus, it is not a good
# idea to cap the number of retries a transaction can attempt;
# instead, it is better to limit the total amount of wall time spent
# retrying.
# ### Idle Transactions
# A transaction is considered idle if it has no outstanding reads or
# SQL queries and has not started a read or SQL query within the last 10
# seconds. Idle transactions can be aborted by Cloud Spanner so that they
# don't hold on to locks indefinitely. In that case, the commit will
# fail with error `ABORTED`.
# If this behavior is undesirable, periodically executing a simple
# SQL query in the transaction (e.g., `SELECT 1`) prevents the
# transaction from becoming idle.
# ## Snapshot Read-Only Transactions
# Snapshot read-only transactions provides a simpler method than
# locking read-write transactions for doing several consistent
# reads. However, this type of transaction does not support writes.
# Snapshot transactions do not take locks. Instead, they work by
# choosing a Cloud Spanner timestamp, then executing all reads at that
# timestamp. Since they do not acquire locks, they do not block
# concurrent read-write transactions.
# Unlike locking read-write transactions, snapshot read-only
# transactions never abort. They can fail if the chosen read
# timestamp is garbage collected; however, the default garbage
# collection policy is generous enough that most applications do not
# need to worry about this in practice.
# Snapshot read-only transactions do not need to call
# Commit or
# Rollback (and in fact are not
# permitted to do so).
# To execute a snapshot transaction, the client specifies a timestamp
# bound, which tells Cloud Spanner how to choose a read timestamp.
# The types of timestamp bound are:
# - Strong (the default).
# - Bounded staleness.
# - Exact staleness.
# If the Cloud Spanner database to be read is geographically distributed,
# stale read-only transactions can execute more quickly than strong
# or read-write transaction, because they are able to execute far
# from the leader replica.
# Each type of timestamp bound is discussed in detail below.
# ### Strong
# Strong reads are guaranteed to see the effects of all transactions
# that have committed before the start of the read. Furthermore, all
# rows yielded by a single read are consistent with each other -- if
# any part of the read observes a transaction, all parts of the read
# see the transaction.
# Strong reads are not repeatable: two consecutive strong read-only
# transactions might return inconsistent results if there are
# concurrent writes. If consistency across reads is required, the
# reads should be executed within a transaction or at an exact read
# timestamp.
# See TransactionOptions.ReadOnly.strong.
# ### Exact Staleness
# These timestamp bounds execute reads at a user-specified
# timestamp. Reads at a timestamp are guaranteed to see a consistent
# prefix of the global transaction history: they observe
# modifications done by all transactions with a commit timestamp <=
# the read timestamp, and observe none of the modifications done by
# transactions with a larger commit timestamp. They will block until
# all conflicting transactions that may be assigned commit timestamps
# <= the read timestamp have finished.
# The timestamp can either be expressed as an absolute Cloud Spanner commit
# timestamp or a staleness relative to the current time.
# These modes do not require a "negotiation phase" to pick a
# timestamp. As a result, they execute slightly faster than the
# equivalent boundedly stale concurrency modes. On the other hand,
# boundedly stale reads usually return fresher results.
# See TransactionOptions.ReadOnly.read_timestamp and
# TransactionOptions.ReadOnly.exact_staleness.
# ### Bounded Staleness
# Bounded staleness modes allow Cloud Spanner to pick the read timestamp,
# subject to a user-provided staleness bound. Cloud Spanner chooses the
# newest timestamp within the staleness bound that allows execution
# of the reads at the closest available replica without blocking.
# All rows yielded are consistent with each other -- if any part of
# the read observes a transaction, all parts of the read see the
# transaction. Boundedly stale reads are not repeatable: two stale
# reads, even if they use the same staleness bound, can execute at
# different timestamps and thus return inconsistent results.
# Boundedly stale reads execute in two phases: the first phase
# negotiates a timestamp among all replicas needed to serve the
# read. In the second phase, reads are executed at the negotiated
# timestamp.
# As a result of the two phase execution, bounded staleness reads are
# usually a little slower than comparable exact staleness
# reads. However, they are typically able to return fresher
# results, and are more likely to execute at the closest replica.
# Because the timestamp negotiation requires up-front knowledge of
# which rows will be read, it can only be used with single-use
# read-only transactions.
# See TransactionOptions.ReadOnly.max_staleness and
# TransactionOptions.ReadOnly.min_read_timestamp.
# ### Old Read Timestamps and Garbage Collection
# Cloud Spanner continuously garbage collects deleted and overwritten data
# in the background to reclaim storage space. This process is known
# as "version GC". By default, version GC reclaims versions after they
# are one hour old. Because of this, Cloud Spanner cannot perform reads
# at read timestamps more than one hour in the past. This
# restriction also applies to in-progress reads and/or SQL queries whose
# timestamp become too old while executing. Reads and SQL queries with
# too-old read timestamps fail with the error `FAILED_PRECONDITION`.
# Corresponds to the JSON property `singleUseTransaction`
# @return [Google::Apis::SpannerV1::TransactionOptions]
attr_accessor :single_use_transaction
# The mutations to be executed when this transaction commits. All
# mutations are applied atomically, in the order they appear in
# this list.
# Corresponds to the JSON property `mutations`
# @return [Array<Google::Apis::SpannerV1::Mutation>]
attr_accessor :mutations
# Commit a previously-started transaction.
# Corresponds to the JSON property `transactionId`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :transaction_id
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@single_use_transaction = args[:single_use_transaction] if args.key?(:single_use_transaction)
@mutations = args[:mutations] if args.key?(:mutations)
@transaction_id = args[:transaction_id] if args.key?(:transaction_id)
end
end
# The request for BeginTransaction.
class BeginTransactionRequest
include Google::Apis::Core::Hashable
# # Transactions
# Each session can have at most one active transaction at a time. After the
# active transaction is completed, the session can immediately be
# re-used for the next transaction. It is not necessary to create a
# new session for each transaction.
# # Transaction Modes
# Cloud Spanner supports two transaction modes:
# 1. Locking read-write. This type of transaction is the only way
# to write data into Cloud Spanner. These transactions rely on
# pessimistic locking and, if necessary, two-phase commit.
# Locking read-write transactions may abort, requiring the
# application to retry.
# 2. Snapshot read-only. This transaction type provides guaranteed
# consistency across several reads, but does not allow
# writes. Snapshot read-only transactions can be configured to
# read at timestamps in the past. Snapshot read-only
# transactions do not need to be committed.
# For transactions that only read, snapshot read-only transactions
# provide simpler semantics and are almost always faster. In
# particular, read-only transactions do not take locks, so they do
# not conflict with read-write transactions. As a consequence of not
# taking locks, they also do not abort, so retry loops are not needed.
# Transactions may only read/write data in a single database. They
# may, however, read/write data in different tables within that
# database.
# ## Locking Read-Write Transactions
# Locking transactions may be used to atomically read-modify-write
# data anywhere in a database. This type of transaction is externally
# consistent.
# Clients should attempt to minimize the amount of time a transaction
# is active. Faster transactions commit with higher probability
# and cause less contention. Cloud Spanner attempts to keep read locks
# active as long as the transaction continues to do reads, and the
# transaction has not been terminated by
# Commit or
# Rollback. Long periods of
# inactivity at the client may cause Cloud Spanner to release a
# transaction's locks and abort it.
# Reads performed within a transaction acquire locks on the data
# being read. Writes can only be done at commit time, after all reads
# have been completed.
# Conceptually, a read-write transaction consists of zero or more
# reads or SQL queries followed by
# Commit. At any time before
# Commit, the client can send a
# Rollback request to abort the
# transaction.
# ### Semantics
# Cloud Spanner can commit the transaction if all read locks it acquired
# are still valid at commit time, and it is able to acquire write
# locks for all writes. Cloud Spanner can abort the transaction for any
# reason. If a commit attempt returns `ABORTED`, Cloud Spanner guarantees
# that the transaction has not modified any user data in Cloud Spanner.
# Unless the transaction commits, Cloud Spanner makes no guarantees about
# how long the transaction's locks were held for. It is an error to
# use Cloud Spanner locks for any sort of mutual exclusion other than
# between Cloud Spanner transactions themselves.
# ### Retrying Aborted Transactions
# When a transaction aborts, the application can choose to retry the
# whole transaction again. To maximize the chances of successfully
# committing the retry, the client should execute the retry in the
# same session as the original attempt. The original session's lock
# priority increases with each consecutive abort, meaning that each
# attempt has a slightly better chance of success than the previous.
# Under some circumstances (e.g., many transactions attempting to
# modify the same row(s)), a transaction can abort many times in a
# short period before successfully committing. Thus, it is not a good
# idea to cap the number of retries a transaction can attempt;
# instead, it is better to limit the total amount of wall time spent
# retrying.
# ### Idle Transactions
# A transaction is considered idle if it has no outstanding reads or
# SQL queries and has not started a read or SQL query within the last 10
# seconds. Idle transactions can be aborted by Cloud Spanner so that they
# don't hold on to locks indefinitely. In that case, the commit will
# fail with error `ABORTED`.
# If this behavior is undesirable, periodically executing a simple
# SQL query in the transaction (e.g., `SELECT 1`) prevents the
# transaction from becoming idle.
# ## Snapshot Read-Only Transactions
# Snapshot read-only transactions provides a simpler method than
# locking read-write transactions for doing several consistent
# reads. However, this type of transaction does not support writes.
# Snapshot transactions do not take locks. Instead, they work by
# choosing a Cloud Spanner timestamp, then executing all reads at that
# timestamp. Since they do not acquire locks, they do not block
# concurrent read-write transactions.
# Unlike locking read-write transactions, snapshot read-only
# transactions never abort. They can fail if the chosen read
# timestamp is garbage collected; however, the default garbage
# collection policy is generous enough that most applications do not
# need to worry about this in practice.
# Snapshot read-only transactions do not need to call
# Commit or
# Rollback (and in fact are not
# permitted to do so).
# To execute a snapshot transaction, the client specifies a timestamp
# bound, which tells Cloud Spanner how to choose a read timestamp.
# The types of timestamp bound are:
# - Strong (the default).
# - Bounded staleness.
# - Exact staleness.
# If the Cloud Spanner database to be read is geographically distributed,
# stale read-only transactions can execute more quickly than strong
# or read-write transaction, because they are able to execute far
# from the leader replica.
# Each type of timestamp bound is discussed in detail below.
# ### Strong
# Strong reads are guaranteed to see the effects of all transactions
# that have committed before the start of the read. Furthermore, all
# rows yielded by a single read are consistent with each other -- if
# any part of the read observes a transaction, all parts of the read
# see the transaction.
# Strong reads are not repeatable: two consecutive strong read-only
# transactions might return inconsistent results if there are
# concurrent writes. If consistency across reads is required, the
# reads should be executed within a transaction or at an exact read
# timestamp.
# See TransactionOptions.ReadOnly.strong.
# ### Exact Staleness
# These timestamp bounds execute reads at a user-specified
# timestamp. Reads at a timestamp are guaranteed to see a consistent
# prefix of the global transaction history: they observe
# modifications done by all transactions with a commit timestamp <=
# the read timestamp, and observe none of the modifications done by
# transactions with a larger commit timestamp. They will block until
# all conflicting transactions that may be assigned commit timestamps
# <= the read timestamp have finished.
# The timestamp can either be expressed as an absolute Cloud Spanner commit
# timestamp or a staleness relative to the current time.
# These modes do not require a "negotiation phase" to pick a
# timestamp. As a result, they execute slightly faster than the
# equivalent boundedly stale concurrency modes. On the other hand,
# boundedly stale reads usually return fresher results.
# See TransactionOptions.ReadOnly.read_timestamp and
# TransactionOptions.ReadOnly.exact_staleness.
# ### Bounded Staleness
# Bounded staleness modes allow Cloud Spanner to pick the read timestamp,
# subject to a user-provided staleness bound. Cloud Spanner chooses the
# newest timestamp within the staleness bound that allows execution
# of the reads at the closest available replica without blocking.
# All rows yielded are consistent with each other -- if any part of
# the read observes a transaction, all parts of the read see the
# transaction. Boundedly stale reads are not repeatable: two stale
# reads, even if they use the same staleness bound, can execute at
# different timestamps and thus return inconsistent results.
# Boundedly stale reads execute in two phases: the first phase
# negotiates a timestamp among all replicas needed to serve the
# read. In the second phase, reads are executed at the negotiated
# timestamp.
# As a result of the two phase execution, bounded staleness reads are
# usually a little slower than comparable exact staleness
# reads. However, they are typically able to return fresher
# results, and are more likely to execute at the closest replica.
# Because the timestamp negotiation requires up-front knowledge of
# which rows will be read, it can only be used with single-use
# read-only transactions.
# See TransactionOptions.ReadOnly.max_staleness and
# TransactionOptions.ReadOnly.min_read_timestamp.
# ### Old Read Timestamps and Garbage Collection
# Cloud Spanner continuously garbage collects deleted and overwritten data
# in the background to reclaim storage space. This process is known
# as "version GC". By default, version GC reclaims versions after they
# are one hour old. Because of this, Cloud Spanner cannot perform reads
# at read timestamps more than one hour in the past. This
# restriction also applies to in-progress reads and/or SQL queries whose
# timestamp become too old while executing. Reads and SQL queries with
# too-old read timestamps fail with the error `FAILED_PRECONDITION`.
# Corresponds to the JSON property `options`
# @return [Google::Apis::SpannerV1::TransactionOptions]
attr_accessor :options
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@options = args[:options] if args.key?(:options)
end
end
# The response for ListInstanceConfigs.
class ListInstanceConfigsResponse
include Google::Apis::Core::Hashable
# `next_page_token` can be sent in a subsequent
# ListInstanceConfigs call to
# fetch more of the matching instance configurations.
# Corresponds to the JSON property `nextPageToken`
# @return [String]
attr_accessor :next_page_token
# The list of requested instance configurations.
# Corresponds to the JSON property `instanceConfigs`
# @return [Array<Google::Apis::SpannerV1::InstanceConfig>]
attr_accessor :instance_configs
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@next_page_token = args[:next_page_token] if args.key?(:next_page_token)
@instance_configs = args[:instance_configs] if args.key?(:instance_configs)
end
end
# Request message for `GetIamPolicy` method.
class GetIamPolicyRequest
include Google::Apis::Core::Hashable
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
end
end
# Response message for `TestIamPermissions` method.
class TestIamPermissionsResponse
include Google::Apis::Core::Hashable
# A subset of `TestPermissionsRequest.permissions` that the caller is
# allowed.
# Corresponds to the JSON property `permissions`
# @return [Array<String>]
attr_accessor :permissions
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@permissions = args[:permissions] if args.key?(:permissions)
end
end
# A rule to be applied in a Policy.
class Rule
include Google::Apis::Core::Hashable
# The config returned to callers of tech.iam.IAM.CheckPolicy for any entries
# that match the LOG action.
# Corresponds to the JSON property `logConfig`
# @return [Array<Google::Apis::SpannerV1::LogConfig>]
attr_accessor :log_config
# If one or more 'in' clauses are specified, the rule matches if
# the PRINCIPAL/AUTHORITY_SELECTOR is in at least one of these entries.
# Corresponds to the JSON property `in`
# @return [Array<String>]
attr_accessor :in
# A permission is a string of form '<service>.<resource type>.<verb>'
# (e.g., 'storage.buckets.list'). A value of '*' matches all permissions,
# and a verb part of '*' (e.g., 'storage.buckets.*') matches all verbs.
# Corresponds to the JSON property `permissions`
# @return [Array<String>]
attr_accessor :permissions
# Required
# Corresponds to the JSON property `action`
# @return [String]
attr_accessor :action
# If one or more 'not_in' clauses are specified, the rule matches
# if the PRINCIPAL/AUTHORITY_SELECTOR is in none of the entries.
# The format for in and not_in entries is the same as for members in a
# Binding (see google/iam/v1/policy.proto).
# Corresponds to the JSON property `notIn`
# @return [Array<String>]
attr_accessor :not_in
# Human-readable description of the rule.
# Corresponds to the JSON property `description`
# @return [String]
attr_accessor :description
# Additional restrictions that must be met
# Corresponds to the JSON property `conditions`
# @return [Array<Google::Apis::SpannerV1::Condition>]
attr_accessor :conditions
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@log_config = args[:log_config] if args.key?(:log_config)
@in = args[:in] if args.key?(:in)
@permissions = args[:permissions] if args.key?(:permissions)
@action = args[:action] if args.key?(:action)
@not_in = args[:not_in] if args.key?(:not_in)
@description = args[:description] if args.key?(:description)
@conditions = args[:conditions] if args.key?(:conditions)
end
end
# Metadata type for the operation returned by
# CreateDatabase.
class CreateDatabaseMetadata
include Google::Apis::Core::Hashable
# The database being created.
# Corresponds to the JSON property `database`
# @return [String]
attr_accessor :database
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@database = args[:database] if args.key?(:database)
end
end
# Specifies what kind of log the caller must write
# Increment a streamz counter with the specified metric and field names.
# Metric names should start with a '/', generally be lowercase-only,
# and end in "_count". Field names should not contain an initial slash.
# The actual exported metric names will have "/iam/policy" prepended.
# Field names correspond to IAM request parameters and field values are
# their respective values.
# At present the only supported field names are
# - "iam_principal", corresponding to IAMContext.principal;
# - "" (empty string), resulting in one aggretated counter with no field.
# Examples:
# counter ` metric: "/debug_access_count" field: "iam_principal" `
# ==> increment counter /iam/policy/backend_debug_access_count
# `iam_principal=[value of IAMContext.principal]`
# At this time we do not support:
# * multiple field names (though this may be supported in the future)
# * decrementing the counter
# * incrementing it by anything other than 1
class LogConfig
include Google::Apis::Core::Hashable
# Write a Cloud Audit log
# Corresponds to the JSON property `cloudAudit`
# @return [Google::Apis::SpannerV1::CloudAuditOptions]
attr_accessor :cloud_audit
# Options for counters
# Corresponds to the JSON property `counter`
# @return [Google::Apis::SpannerV1::CounterOptions]
attr_accessor :counter
# Write a Data Access (Gin) log
# Corresponds to the JSON property `dataAccess`
# @return [Google::Apis::SpannerV1::DataAccessOptions]
attr_accessor :data_access
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@cloud_audit = args[:cloud_audit] if args.key?(:cloud_audit)
@counter = args[:counter] if args.key?(:counter)
@data_access = args[:data_access] if args.key?(:data_access)
end
end
# A session in the Cloud Spanner API.
class Session
include Google::Apis::Core::Hashable
# Required. The name of the session.
# Corresponds to the JSON property `name`
# @return [String]
attr_accessor :name
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@name = args[:name] if args.key?(:name)
end
end
# KeyRange represents a range of rows in a table or index.
# A range has a start key and an end key. These keys can be open or
# closed, indicating if the range includes rows with that key.
# Keys are represented by lists, where the ith value in the list
# corresponds to the ith component of the table or index primary key.
# Individual values are encoded as described here.
# For example, consider the following table definition:
# CREATE TABLE UserEvents (
# UserName STRING(MAX),
# EventDate STRING(10)
# ) PRIMARY KEY(UserName, EventDate);
# The following keys name rows in this table:
# "Bob", "2014-09-23"
# Since the `UserEvents` table's `PRIMARY KEY` clause names two
# columns, each `UserEvents` key has two elements; the first is the
# `UserName`, and the second is the `EventDate`.
# Key ranges with multiple components are interpreted
# lexicographically by component using the table or index key's declared
# sort order. For example, the following range returns all events for
# user `"Bob"` that occurred in the year 2015:
# "start_closed": ["Bob", "2015-01-01"]
# "end_closed": ["Bob", "2015-12-31"]
# Start and end keys can omit trailing key components. This affects the
# inclusion and exclusion of rows that exactly match the provided key
# components: if the key is closed, then rows that exactly match the
# provided components are included; if the key is open, then rows
# that exactly match are not included.
# For example, the following range includes all events for `"Bob"` that
# occurred during and after the year 2000:
# "start_closed": ["Bob", "2000-01-01"]
# "end_closed": ["Bob"]
# The next example retrieves all events for `"Bob"`:
# "start_closed": ["Bob"]
# "end_closed": ["Bob"]
# To retrieve events before the year 2000:
# "start_closed": ["Bob"]
# "end_open": ["Bob", "2000-01-01"]
# The following range includes all rows in the table:
# "start_closed": []
# "end_closed": []
# This range returns all users whose `UserName` begins with any
# character from A to C:
# "start_closed": ["A"]
# "end_open": ["D"]
# This range returns all users whose `UserName` begins with B:
# "start_closed": ["B"]
# "end_open": ["C"]
# Key ranges honor column sort order. For example, suppose a table is
# defined as follows:
# CREATE TABLE DescendingSortedTable `
# Key INT64,
# ...
# ) PRIMARY KEY(Key DESC);
# The following range retrieves all rows with key values between 1
# and 100 inclusive:
# "start_closed": ["100"]
# "end_closed": ["1"]
# Note that 100 is passed as the start, and 1 is passed as the end,
# because `Key` is a descending column in the schema.
class KeyRange
include Google::Apis::Core::Hashable
# If the start is closed, then the range includes all rows whose
# first `len(start_closed)` key columns exactly match `start_closed`.
# Corresponds to the JSON property `startClosed`
# @return [Array<Object>]
attr_accessor :start_closed
# If the start is open, then the range excludes rows whose first
# `len(start_open)` key columns exactly match `start_open`.
# Corresponds to the JSON property `startOpen`
# @return [Array<Object>]
attr_accessor :start_open
# If the end is open, then the range excludes rows whose first
# `len(end_open)` key columns exactly match `end_open`.
# Corresponds to the JSON property `endOpen`
# @return [Array<Object>]
attr_accessor :end_open
# If the end is closed, then the range includes all rows whose
# first `len(end_closed)` key columns exactly match `end_closed`.
# Corresponds to the JSON property `endClosed`
# @return [Array<Object>]
attr_accessor :end_closed
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@start_closed = args[:start_closed] if args.key?(:start_closed)
@start_open = args[:start_open] if args.key?(:start_open)
@end_open = args[:end_open] if args.key?(:end_open)
@end_closed = args[:end_closed] if args.key?(:end_closed)
end
end
# The response for ListInstances.
class ListInstancesResponse
include Google::Apis::Core::Hashable
# `next_page_token` can be sent in a subsequent
# ListInstances call to fetch more
# of the matching instances.
# Corresponds to the JSON property `nextPageToken`
# @return [String]
attr_accessor :next_page_token
# The list of requested instances.
# Corresponds to the JSON property `instances`
# @return [Array<Google::Apis::SpannerV1::Instance>]
attr_accessor :instances
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@next_page_token = args[:next_page_token] if args.key?(:next_page_token)
@instances = args[:instances] if args.key?(:instances)
end
end
# Condensed representation of a node and its subtree. Only present for
# `SCALAR` PlanNode(s).
class ShortRepresentation
include Google::Apis::Core::Hashable
# A string representation of the expression subtree rooted at this node.
# Corresponds to the JSON property `description`
# @return [String]
attr_accessor :description
# A mapping of (subquery variable name) -> (subquery node id) for cases
# where the `description` string of this node references a `SCALAR`
# subquery contained in the expression subtree rooted at this node. The
# referenced `SCALAR` subquery may not necessarily be a direct child of
# this node.
# Corresponds to the JSON property `subqueries`
# @return [Hash<String,Fixnum>]
attr_accessor :subqueries
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@description = args[:description] if args.key?(:description)
@subqueries = args[:subqueries] if args.key?(:subqueries)
end
end
# A possible configuration for a Cloud Spanner instance. Configurations
# define the geographic placement of nodes and their replication.
class InstanceConfig
include Google::Apis::Core::Hashable
# A unique identifier for the instance configuration. Values
# are of the form
# `projects/<project>/instanceConfigs/a-z*`
# Corresponds to the JSON property `name`
# @return [String]
attr_accessor :name
# The name of this instance configuration as it appears in UIs.
# Corresponds to the JSON property `displayName`
# @return [String]
attr_accessor :display_name
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@name = args[:name] if args.key?(:name)
@display_name = args[:display_name] if args.key?(:display_name)
end
end
# The request for UpdateInstance.
class UpdateInstanceRequest
include Google::Apis::Core::Hashable
# An isolated set of Cloud Spanner resources on which databases can be hosted.
# Corresponds to the JSON property `instance`
# @return [Google::Apis::SpannerV1::Instance]
attr_accessor :instance
# Required. A mask specifying which fields in [][google.spanner.admin.instance.
# v1.UpdateInstanceRequest.instance] should be updated.
# The field mask must always be specified; this prevents any future fields in
# [][google.spanner.admin.instance.v1.Instance] from being erased accidentally
# by clients that do not know
# about them.
# Corresponds to the JSON property `fieldMask`
# @return [String]
attr_accessor :field_mask
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@instance = args[:instance] if args.key?(:instance)
@field_mask = args[:field_mask] if args.key?(:field_mask)
end
end
# A generic empty message that you can re-use to avoid defining duplicated
# empty messages in your APIs. A typical example is to use it as the request
# or the response type of an API method. For instance:
# service Foo `
# rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty);
# `
# The JSON representation for `Empty` is empty JSON object ````.
class Empty
include Google::Apis::Core::Hashable
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
end
end
# # Transactions
# Each session can have at most one active transaction at a time. After the
# active transaction is completed, the session can immediately be
# re-used for the next transaction. It is not necessary to create a
# new session for each transaction.
# # Transaction Modes
# Cloud Spanner supports two transaction modes:
# 1. Locking read-write. This type of transaction is the only way
# to write data into Cloud Spanner. These transactions rely on
# pessimistic locking and, if necessary, two-phase commit.
# Locking read-write transactions may abort, requiring the
# application to retry.
# 2. Snapshot read-only. This transaction type provides guaranteed
# consistency across several reads, but does not allow
# writes. Snapshot read-only transactions can be configured to
# read at timestamps in the past. Snapshot read-only
# transactions do not need to be committed.
# For transactions that only read, snapshot read-only transactions
# provide simpler semantics and are almost always faster. In
# particular, read-only transactions do not take locks, so they do
# not conflict with read-write transactions. As a consequence of not
# taking locks, they also do not abort, so retry loops are not needed.
# Transactions may only read/write data in a single database. They
# may, however, read/write data in different tables within that
# database.
# ## Locking Read-Write Transactions
# Locking transactions may be used to atomically read-modify-write
# data anywhere in a database. This type of transaction is externally
# consistent.
# Clients should attempt to minimize the amount of time a transaction
# is active. Faster transactions commit with higher probability
# and cause less contention. Cloud Spanner attempts to keep read locks
# active as long as the transaction continues to do reads, and the
# transaction has not been terminated by
# Commit or
# Rollback. Long periods of
# inactivity at the client may cause Cloud Spanner to release a
# transaction's locks and abort it.
# Reads performed within a transaction acquire locks on the data
# being read. Writes can only be done at commit time, after all reads
# have been completed.
# Conceptually, a read-write transaction consists of zero or more
# reads or SQL queries followed by
# Commit. At any time before
# Commit, the client can send a
# Rollback request to abort the
# transaction.
# ### Semantics
# Cloud Spanner can commit the transaction if all read locks it acquired
# are still valid at commit time, and it is able to acquire write
# locks for all writes. Cloud Spanner can abort the transaction for any
# reason. If a commit attempt returns `ABORTED`, Cloud Spanner guarantees
# that the transaction has not modified any user data in Cloud Spanner.
# Unless the transaction commits, Cloud Spanner makes no guarantees about
# how long the transaction's locks were held for. It is an error to
# use Cloud Spanner locks for any sort of mutual exclusion other than
# between Cloud Spanner transactions themselves.
# ### Retrying Aborted Transactions
# When a transaction aborts, the application can choose to retry the
# whole transaction again. To maximize the chances of successfully
# committing the retry, the client should execute the retry in the
# same session as the original attempt. The original session's lock
# priority increases with each consecutive abort, meaning that each
# attempt has a slightly better chance of success than the previous.
# Under some circumstances (e.g., many transactions attempting to
# modify the same row(s)), a transaction can abort many times in a
# short period before successfully committing. Thus, it is not a good
# idea to cap the number of retries a transaction can attempt;
# instead, it is better to limit the total amount of wall time spent
# retrying.
# ### Idle Transactions
# A transaction is considered idle if it has no outstanding reads or
# SQL queries and has not started a read or SQL query within the last 10
# seconds. Idle transactions can be aborted by Cloud Spanner so that they
# don't hold on to locks indefinitely. In that case, the commit will
# fail with error `ABORTED`.
# If this behavior is undesirable, periodically executing a simple
# SQL query in the transaction (e.g., `SELECT 1`) prevents the
# transaction from becoming idle.
# ## Snapshot Read-Only Transactions
# Snapshot read-only transactions provides a simpler method than
# locking read-write transactions for doing several consistent
# reads. However, this type of transaction does not support writes.
# Snapshot transactions do not take locks. Instead, they work by
# choosing a Cloud Spanner timestamp, then executing all reads at that
# timestamp. Since they do not acquire locks, they do not block
# concurrent read-write transactions.
# Unlike locking read-write transactions, snapshot read-only
# transactions never abort. They can fail if the chosen read
# timestamp is garbage collected; however, the default garbage
# collection policy is generous enough that most applications do not
# need to worry about this in practice.
# Snapshot read-only transactions do not need to call
# Commit or
# Rollback (and in fact are not
# permitted to do so).
# To execute a snapshot transaction, the client specifies a timestamp
# bound, which tells Cloud Spanner how to choose a read timestamp.
# The types of timestamp bound are:
# - Strong (the default).
# - Bounded staleness.
# - Exact staleness.
# If the Cloud Spanner database to be read is geographically distributed,
# stale read-only transactions can execute more quickly than strong
# or read-write transaction, because they are able to execute far
# from the leader replica.
# Each type of timestamp bound is discussed in detail below.
# ### Strong
# Strong reads are guaranteed to see the effects of all transactions
# that have committed before the start of the read. Furthermore, all
# rows yielded by a single read are consistent with each other -- if
# any part of the read observes a transaction, all parts of the read
# see the transaction.
# Strong reads are not repeatable: two consecutive strong read-only
# transactions might return inconsistent results if there are
# concurrent writes. If consistency across reads is required, the
# reads should be executed within a transaction or at an exact read
# timestamp.
# See TransactionOptions.ReadOnly.strong.
# ### Exact Staleness
# These timestamp bounds execute reads at a user-specified
# timestamp. Reads at a timestamp are guaranteed to see a consistent
# prefix of the global transaction history: they observe
# modifications done by all transactions with a commit timestamp <=
# the read timestamp, and observe none of the modifications done by
# transactions with a larger commit timestamp. They will block until
# all conflicting transactions that may be assigned commit timestamps
# <= the read timestamp have finished.
# The timestamp can either be expressed as an absolute Cloud Spanner commit
# timestamp or a staleness relative to the current time.
# These modes do not require a "negotiation phase" to pick a
# timestamp. As a result, they execute slightly faster than the
# equivalent boundedly stale concurrency modes. On the other hand,
# boundedly stale reads usually return fresher results.
# See TransactionOptions.ReadOnly.read_timestamp and
# TransactionOptions.ReadOnly.exact_staleness.
# ### Bounded Staleness
# Bounded staleness modes allow Cloud Spanner to pick the read timestamp,
# subject to a user-provided staleness bound. Cloud Spanner chooses the
# newest timestamp within the staleness bound that allows execution
# of the reads at the closest available replica without blocking.
# All rows yielded are consistent with each other -- if any part of
# the read observes a transaction, all parts of the read see the
# transaction. Boundedly stale reads are not repeatable: two stale
# reads, even if they use the same staleness bound, can execute at
# different timestamps and thus return inconsistent results.
# Boundedly stale reads execute in two phases: the first phase
# negotiates a timestamp among all replicas needed to serve the
# read. In the second phase, reads are executed at the negotiated
# timestamp.
# As a result of the two phase execution, bounded staleness reads are
# usually a little slower than comparable exact staleness
# reads. However, they are typically able to return fresher
# results, and are more likely to execute at the closest replica.
# Because the timestamp negotiation requires up-front knowledge of
# which rows will be read, it can only be used with single-use
# read-only transactions.
# See TransactionOptions.ReadOnly.max_staleness and
# TransactionOptions.ReadOnly.min_read_timestamp.
# ### Old Read Timestamps and Garbage Collection
# Cloud Spanner continuously garbage collects deleted and overwritten data
# in the background to reclaim storage space. This process is known
# as "version GC". By default, version GC reclaims versions after they
# are one hour old. Because of this, Cloud Spanner cannot perform reads
# at read timestamps more than one hour in the past. This
# restriction also applies to in-progress reads and/or SQL queries whose
# timestamp become too old while executing. Reads and SQL queries with
# too-old read timestamps fail with the error `FAILED_PRECONDITION`.
class TransactionOptions
include Google::Apis::Core::Hashable
# Options for read-write transactions.
# Corresponds to the JSON property `readWrite`
# @return [Google::Apis::SpannerV1::ReadWrite]
attr_accessor :read_write
# Options for read-only transactions.
# Corresponds to the JSON property `readOnly`
# @return [Google::Apis::SpannerV1::ReadOnly]
attr_accessor :read_only
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@read_write = args[:read_write] if args.key?(:read_write)
@read_only = args[:read_only] if args.key?(:read_only)
end
end
# The request for CreateDatabase.
class CreateDatabaseRequest
include Google::Apis::Core::Hashable
# Required. A `CREATE DATABASE` statement, which specifies the ID of the
# new database. The database ID must conform to the regular expression
# `a-z*[a-z0-9]` and be between 2 and 30 characters in length.
# Corresponds to the JSON property `createStatement`
# @return [String]
attr_accessor :create_statement
# An optional list of DDL statements to run inside the newly created
# database. Statements can create tables, indexes, etc. These
# statements execute atomically with the creation of the database:
# if there is an error in any statement, the database is not created.
# Corresponds to the JSON property `extraStatements`
# @return [Array<String>]
attr_accessor :extra_statements
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@create_statement = args[:create_statement] if args.key?(:create_statement)
@extra_statements = args[:extra_statements] if args.key?(:extra_statements)
end
end
# The request for CreateInstance.
class CreateInstanceRequest
include Google::Apis::Core::Hashable
# Required. The ID of the instance to create. Valid identifiers are of the
# form `a-z*[a-z0-9]` and must be between 6 and 30 characters in
# length.
# Corresponds to the JSON property `instanceId`
# @return [String]
attr_accessor :instance_id
# An isolated set of Cloud Spanner resources on which databases can be hosted.
# Corresponds to the JSON property `instance`
# @return [Google::Apis::SpannerV1::Instance]
attr_accessor :instance
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@instance_id = args[:instance_id] if args.key?(:instance_id)
@instance = args[:instance] if args.key?(:instance)
end
end
# A condition to be met.
class Condition
include Google::Apis::Core::Hashable
# The objects of the condition. This is mutually exclusive with 'value'.
# Corresponds to the JSON property `values`
# @return [Array<String>]
attr_accessor :values
# Trusted attributes supplied by the IAM system.
# Corresponds to the JSON property `iam`
# @return [String]
attr_accessor :iam
# An operator to apply the subject with.
# Corresponds to the JSON property `op`
# @return [String]
attr_accessor :op
# Trusted attributes discharged by the service.
# Corresponds to the JSON property `svc`
# @return [String]
attr_accessor :svc
# Trusted attributes supplied by any service that owns resources and uses
# the IAM system for access control.
# Corresponds to the JSON property `sys`
# @return [String]
attr_accessor :sys
# DEPRECATED. Use 'values' instead.
# Corresponds to the JSON property `value`
# @return [String]
attr_accessor :value
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@values = args[:values] if args.key?(:values)
@iam = args[:iam] if args.key?(:iam)
@op = args[:op] if args.key?(:op)
@svc = args[:svc] if args.key?(:svc)
@sys = args[:sys] if args.key?(:sys)
@value = args[:value] if args.key?(:value)
end
end
# Provides the configuration for logging a type of permissions.
# Example:
# `
# "audit_log_configs": [
# `
# "log_type": "DATA_READ",
# "exempted_members": [
# "user:foo@gmail.com"
# ]
# `,
# `
# "log_type": "DATA_WRITE",
# `
# ]
# `
# This enables 'DATA_READ' and 'DATA_WRITE' logging, while exempting
# foo@gmail.com from DATA_READ logging.
class AuditLogConfig
include Google::Apis::Core::Hashable
# Specifies the identities that do not cause logging for this type of
# permission.
# Follows the same format of Binding.members.
# Corresponds to the JSON property `exemptedMembers`
# @return [Array<String>]
attr_accessor :exempted_members
# The log type that this config enables.
# Corresponds to the JSON property `logType`
# @return [String]
attr_accessor :log_type
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@exempted_members = args[:exempted_members] if args.key?(:exempted_members)
@log_type = args[:log_type] if args.key?(:log_type)
end
end
# Options for read-only transactions.
class ReadOnly
include Google::Apis::Core::Hashable
# Read data at a timestamp >= `NOW - max_staleness`
# seconds. Guarantees that all writes that have committed more
# than the specified number of seconds ago are visible. Because
# Cloud Spanner chooses the exact timestamp, this mode works even if
# the client's local clock is substantially skewed from Cloud Spanner
# commit timestamps.
# Useful for reading the freshest data available at a nearby
# replica, while bounding the possible staleness if the local
# replica has fallen behind.
# Note that this option can only be used in single-use
# transactions.
# Corresponds to the JSON property `maxStaleness`
# @return [String]
attr_accessor :max_staleness
# Executes all reads at the given timestamp. Unlike other modes,
# reads at a specific timestamp are repeatable; the same read at
# the same timestamp always returns the same data. If the
# timestamp is in the future, the read will block until the
# specified timestamp, modulo the read's deadline.
# Useful for large scale consistent reads such as mapreduces, or
# for coordinating many reads against a consistent snapshot of the
# data.
# Corresponds to the JSON property `readTimestamp`
# @return [String]
attr_accessor :read_timestamp
# If true, the Cloud Spanner-selected read timestamp is included in
# the Transaction message that describes the transaction.
# Corresponds to the JSON property `returnReadTimestamp`
# @return [Boolean]
attr_accessor :return_read_timestamp
alias_method :return_read_timestamp?, :return_read_timestamp
# Executes all reads at a timestamp that is `exact_staleness`
# old. The timestamp is chosen soon after the read is started.
# Guarantees that all writes that have committed more than the
# specified number of seconds ago are visible. Because Cloud Spanner
# chooses the exact timestamp, this mode works even if the client's
# local clock is substantially skewed from Cloud Spanner commit
# timestamps.
# Useful for reading at nearby replicas without the distributed
# timestamp negotiation overhead of `max_staleness`.
# Corresponds to the JSON property `exactStaleness`
# @return [String]
attr_accessor :exact_staleness
# Read at a timestamp where all previously committed transactions
# are visible.
# Corresponds to the JSON property `strong`
# @return [Boolean]
attr_accessor :strong
alias_method :strong?, :strong
# Executes all reads at a timestamp >= `min_read_timestamp`.
# This is useful for requesting fresher data than some previous
# read, or data that is fresh enough to observe the effects of some
# previously committed transaction whose timestamp is known.
# Note that this option can only be used in single-use transactions.
# Corresponds to the JSON property `minReadTimestamp`
# @return [String]
attr_accessor :min_read_timestamp
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@max_staleness = args[:max_staleness] if args.key?(:max_staleness)
@read_timestamp = args[:read_timestamp] if args.key?(:read_timestamp)
@return_read_timestamp = args[:return_read_timestamp] if args.key?(:return_read_timestamp)
@exact_staleness = args[:exact_staleness] if args.key?(:exact_staleness)
@strong = args[:strong] if args.key?(:strong)
@min_read_timestamp = args[:min_read_timestamp] if args.key?(:min_read_timestamp)
end
end
# The request for ExecuteSql and
# ExecuteStreamingSql.
class ExecuteSqlRequest
include Google::Apis::Core::Hashable
# Used to control the amount of debugging information returned in
# ResultSetStats.
# Corresponds to the JSON property `queryMode`
# @return [String]
attr_accessor :query_mode
# This message is used to select the transaction in which a
# Read or
# ExecuteSql call runs.
# See TransactionOptions for more information about transactions.
# Corresponds to the JSON property `transaction`
# @return [Google::Apis::SpannerV1::TransactionSelector]
attr_accessor :transaction
# If this request is resuming a previously interrupted SQL query
# execution, `resume_token` should be copied from the last
# PartialResultSet yielded before the interruption. Doing this
# enables the new SQL query execution to resume where the last one left
# off. The rest of the request parameters must exactly match the
# request that yielded this token.
# Corresponds to the JSON property `resumeToken`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :resume_token
# It is not always possible for Cloud Spanner to infer the right SQL type
# from a JSON value. For example, values of type `BYTES` and values
# of type `STRING` both appear in params as JSON strings.
# In these cases, `param_types` can be used to specify the exact
# SQL type for some or all of the SQL query parameters. See the
# definition of Type for more information
# about SQL types.
# Corresponds to the JSON property `paramTypes`
# @return [Hash<String,Google::Apis::SpannerV1::Type>]
attr_accessor :param_types
# Required. The SQL query string.
# Corresponds to the JSON property `sql`
# @return [String]
attr_accessor :sql
# The SQL query string can contain parameter placeholders. A parameter
# placeholder consists of `'@'` followed by the parameter
# name. Parameter names consist of any combination of letters,
# numbers, and underscores.
# Parameters can appear anywhere that a literal value is expected. The same
# parameter name can be used more than once, for example:
# `"WHERE id > @msg_id AND id < @msg_id + 100"`
# It is an error to execute an SQL query with unbound parameters.
# Parameter values are specified using `params`, which is a JSON
# object whose keys are parameter names, and whose values are the
# corresponding parameter values.
# Corresponds to the JSON property `params`
# @return [Hash<String,Object>]
attr_accessor :params
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@query_mode = args[:query_mode] if args.key?(:query_mode)
@transaction = args[:transaction] if args.key?(:transaction)
@resume_token = args[:resume_token] if args.key?(:resume_token)
@param_types = args[:param_types] if args.key?(:param_types)
@sql = args[:sql] if args.key?(:sql)
@params = args[:params] if args.key?(:params)
end
end
# Defines an Identity and Access Management (IAM) policy. It is used to
# specify access control policies for Cloud Platform resources.
# A `Policy` consists of a list of `bindings`. A `Binding` binds a list of
# `members` to a `role`, where the members can be user accounts, Google groups,
# Google domains, and service accounts. A `role` is a named list of permissions
# defined by IAM.
# **Example**
# `
# "bindings": [
# `
# "role": "roles/owner",
# "members": [
# "user:mike@example.com",
# "group:admins@example.com",
# "domain:google.com",
# "serviceAccount:my-other-app@appspot.gserviceaccount.com",
# ]
# `,
# `
# "role": "roles/viewer",
# "members": ["user:sean@example.com"]
# `
# ]
# `
# For a description of IAM and its features, see the
# [IAM developer's guide](https://cloud.google.com/iam).
class Policy
include Google::Apis::Core::Hashable
#
# Corresponds to the JSON property `iamOwned`
# @return [Boolean]
attr_accessor :iam_owned
alias_method :iam_owned?, :iam_owned
# If more than one rule is specified, the rules are applied in the following
# manner:
# - All matching LOG rules are always applied.
# - If any DENY/DENY_WITH_LOG rule matches, permission is denied.
# Logging will be applied if one or more matching rule requires logging.
# - Otherwise, if any ALLOW/ALLOW_WITH_LOG rule matches, permission is
# granted.
# Logging will be applied if one or more matching rule requires logging.
# - Otherwise, if no rule applies, permission is denied.
# Corresponds to the JSON property `rules`
# @return [Array<Google::Apis::SpannerV1::Rule>]
attr_accessor :rules
# Version of the `Policy`. The default version is 0.
# Corresponds to the JSON property `version`
# @return [Fixnum]
attr_accessor :version
# Specifies cloud audit logging configuration for this policy.
# Corresponds to the JSON property `auditConfigs`
# @return [Array<Google::Apis::SpannerV1::AuditConfig>]
attr_accessor :audit_configs
# Associates a list of `members` to a `role`.
# Multiple `bindings` must not be specified for the same `role`.
# `bindings` with no members will result in an error.
# Corresponds to the JSON property `bindings`
# @return [Array<Google::Apis::SpannerV1::Binding>]
attr_accessor :bindings
# `etag` is used for optimistic concurrency control as a way to help
# prevent simultaneous updates of a policy from overwriting each other.
# It is strongly suggested that systems make use of the `etag` in the
# read-modify-write cycle to perform policy updates in order to avoid race
# conditions: An `etag` is returned in the response to `getIamPolicy`, and
# systems are expected to put that etag in the request to `setIamPolicy` to
# ensure that their change will be applied to the same version of the policy.
# If no `etag` is provided in the call to `setIamPolicy`, then the existing
# policy is overwritten blindly.
# Corresponds to the JSON property `etag`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :etag
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@iam_owned = args[:iam_owned] if args.key?(:iam_owned)
@rules = args[:rules] if args.key?(:rules)
@version = args[:version] if args.key?(:version)
@audit_configs = args[:audit_configs] if args.key?(:audit_configs)
@bindings = args[:bindings] if args.key?(:bindings)
@etag = args[:etag] if args.key?(:etag)
end
end
# The request for Read and
# StreamingRead.
class ReadRequest
include Google::Apis::Core::Hashable
# If non-empty, the name of an index on table. This index is
# used instead of the table primary key when interpreting key_set
# and sorting result rows. See key_set for further information.
# Corresponds to the JSON property `index`
# @return [String]
attr_accessor :index
# `KeySet` defines a collection of Cloud Spanner keys and/or key ranges. All
# the keys are expected to be in the same table or index. The keys need
# not be sorted in any particular way.
# If the same key is specified multiple times in the set (for example
# if two ranges, two keys, or a key and a range overlap), Cloud Spanner
# behaves as if the key were only specified once.
# Corresponds to the JSON property `keySet`
# @return [Google::Apis::SpannerV1::KeySet]
attr_accessor :key_set
# The columns of table to be returned for each row matching
# this request.
# Corresponds to the JSON property `columns`
# @return [Array<String>]
attr_accessor :columns
# This message is used to select the transaction in which a
# Read or
# ExecuteSql call runs.
# See TransactionOptions for more information about transactions.
# Corresponds to the JSON property `transaction`
# @return [Google::Apis::SpannerV1::TransactionSelector]
attr_accessor :transaction
# If this request is resuming a previously interrupted read,
# `resume_token` should be copied from the last
# PartialResultSet yielded before the interruption. Doing this
# enables the new read to resume where the last read left off. The
# rest of the request parameters must exactly match the request
# that yielded this token.
# Corresponds to the JSON property `resumeToken`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :resume_token
# Required. The name of the table in the database to be read.
# Corresponds to the JSON property `table`
# @return [String]
attr_accessor :table
# If greater than zero, only the first `limit` rows are yielded. If `limit`
# is zero, the default is no limit.
# Corresponds to the JSON property `limit`
# @return [Fixnum]
attr_accessor :limit
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@index = args[:index] if args.key?(:index)
@key_set = args[:key_set] if args.key?(:key_set)
@columns = args[:columns] if args.key?(:columns)
@transaction = args[:transaction] if args.key?(:transaction)
@resume_token = args[:resume_token] if args.key?(:resume_token)
@table = args[:table] if args.key?(:table)
@limit = args[:limit] if args.key?(:limit)
end
end
# Arguments to insert, update, insert_or_update, and
# replace operations.
class Write
include Google::Apis::Core::Hashable
# The names of the columns in table to be written.
# The list of columns must contain enough columns to allow
# Cloud Spanner to derive values for all primary key columns in the
# row(s) to be modified.
# Corresponds to the JSON property `columns`
# @return [Array<String>]
attr_accessor :columns
# The values to be written. `values` can contain more than one
# list of values. If it does, then multiple rows are written, one
# for each entry in `values`. Each list in `values` must have
# exactly as many entries as there are entries in columns
# above. Sending multiple lists is equivalent to sending multiple
# `Mutation`s, each containing one `values` entry and repeating
# table and columns. Individual values in each list are
# encoded as described here.
# Corresponds to the JSON property `values`
# @return [Array<Array<Object>>]
attr_accessor :values
# Required. The table whose rows will be written.
# Corresponds to the JSON property `table`
# @return [String]
attr_accessor :table
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@columns = args[:columns] if args.key?(:columns)
@values = args[:values] if args.key?(:values)
@table = args[:table] if args.key?(:table)
end
end
# Write a Data Access (Gin) log
class DataAccessOptions
include Google::Apis::Core::Hashable
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
end
end
# Options for read-write transactions.
class ReadWrite
include Google::Apis::Core::Hashable
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
end
end
# This resource represents a long-running operation that is the result of a
# network API call.
class Operation
include Google::Apis::Core::Hashable
# The normal response of the operation in case of success. If the original
# method returns no data on success, such as `Delete`, the response is
# `google.protobuf.Empty`. If the original method is standard
# `Get`/`Create`/`Update`, the response should be the resource. For other
# methods, the response should have the type `XxxResponse`, where `Xxx`
# is the original method name. For example, if the original method name
# is `TakeSnapshot()`, the inferred response type is
# `TakeSnapshotResponse`.
# Corresponds to the JSON property `response`
# @return [Hash<String,Object>]
attr_accessor :response
# The server-assigned name, which is only unique within the same service that
# originally returns it. If you use the default HTTP mapping, the
# `name` should have the format of `operations/some/unique/name`.
# Corresponds to the JSON property `name`
# @return [String]
attr_accessor :name
# The `Status` type defines a logical error model that is suitable for different
# programming environments, including REST APIs and RPC APIs. It is used by
# [gRPC](https://github.com/grpc). The error model is designed to be:
# - Simple to use and understand for most users
# - Flexible enough to meet unexpected needs
# # Overview
# The `Status` message contains three pieces of data: error code, error message,
# and error details. The error code should be an enum value of
# google.rpc.Code, but it may accept additional error codes if needed. The
# error message should be a developer-facing English message that helps
# developers *understand* and *resolve* the error. If a localized user-facing
# error message is needed, put the localized message in the error details or
# localize it in the client. The optional error details may contain arbitrary
# information about the error. There is a predefined set of error detail types
# in the package `google.rpc` which can be used for common error conditions.
# # Language mapping
# The `Status` message is the logical representation of the error model, but it
# is not necessarily the actual wire format. When the `Status` message is
# exposed in different client libraries and different wire protocols, it can be
# mapped differently. For example, it will likely be mapped to some exceptions
# in Java, but more likely mapped to some error codes in C.
# # Other uses
# The error model and the `Status` message can be used in a variety of
# environments, either with or without APIs, to provide a
# consistent developer experience across different environments.
# Example uses of this error model include:
# - Partial errors. If a service needs to return partial errors to the client,
# it may embed the `Status` in the normal response to indicate the partial
# errors.
# - Workflow errors. A typical workflow has multiple steps. Each step may
# have a `Status` message for error reporting purpose.
# - Batch operations. If a client uses batch request and batch response, the
# `Status` message should be used directly inside batch response, one for
# each error sub-response.
# - Asynchronous operations. If an API call embeds asynchronous operation
# results in its response, the status of those operations should be
# represented directly using the `Status` message.
# - Logging. If some API errors are stored in logs, the message `Status` could
# be used directly after any stripping needed for security/privacy reasons.
# Corresponds to the JSON property `error`
# @return [Google::Apis::SpannerV1::Status]
attr_accessor :error
# Service-specific metadata associated with the operation. It typically
# contains progress information and common metadata such as create time.
# Some services might not provide such metadata. Any method that returns a
# long-running operation should document the metadata type, if any.
# Corresponds to the JSON property `metadata`
# @return [Hash<String,Object>]
attr_accessor :metadata
# If the value is `false`, it means the operation is still in progress.
# If true, the operation is completed, and either `error` or `response` is
# available.
# Corresponds to the JSON property `done`
# @return [Boolean]
attr_accessor :done
alias_method :done?, :done
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@response = args[:response] if args.key?(:response)
@name = args[:name] if args.key?(:name)
@error = args[:error] if args.key?(:error)
@metadata = args[:metadata] if args.key?(:metadata)
@done = args[:done] if args.key?(:done)
end
end
# The `Status` type defines a logical error model that is suitable for different
# programming environments, including REST APIs and RPC APIs. It is used by
# [gRPC](https://github.com/grpc). The error model is designed to be:
# - Simple to use and understand for most users
# - Flexible enough to meet unexpected needs
# # Overview
# The `Status` message contains three pieces of data: error code, error message,
# and error details. The error code should be an enum value of
# google.rpc.Code, but it may accept additional error codes if needed. The
# error message should be a developer-facing English message that helps
# developers *understand* and *resolve* the error. If a localized user-facing
# error message is needed, put the localized message in the error details or
# localize it in the client. The optional error details may contain arbitrary
# information about the error. There is a predefined set of error detail types
# in the package `google.rpc` which can be used for common error conditions.
# # Language mapping
# The `Status` message is the logical representation of the error model, but it
# is not necessarily the actual wire format. When the `Status` message is
# exposed in different client libraries and different wire protocols, it can be
# mapped differently. For example, it will likely be mapped to some exceptions
# in Java, but more likely mapped to some error codes in C.
# # Other uses
# The error model and the `Status` message can be used in a variety of
# environments, either with or without APIs, to provide a
# consistent developer experience across different environments.
# Example uses of this error model include:
# - Partial errors. If a service needs to return partial errors to the client,
# it may embed the `Status` in the normal response to indicate the partial
# errors.
# - Workflow errors. A typical workflow has multiple steps. Each step may
# have a `Status` message for error reporting purpose.
# - Batch operations. If a client uses batch request and batch response, the
# `Status` message should be used directly inside batch response, one for
# each error sub-response.
# - Asynchronous operations. If an API call embeds asynchronous operation
# results in its response, the status of those operations should be
# represented directly using the `Status` message.
# - Logging. If some API errors are stored in logs, the message `Status` could
# be used directly after any stripping needed for security/privacy reasons.
class Status
include Google::Apis::Core::Hashable
# A developer-facing error message, which should be in English. Any
# user-facing error message should be localized and sent in the
# google.rpc.Status.details field, or localized by the client.
# Corresponds to the JSON property `message`
# @return [String]
attr_accessor :message
# A list of messages that carry the error details. There will be a
# common set of message types for APIs to use.
# Corresponds to the JSON property `details`
# @return [Array<Hash<String,Object>>]
attr_accessor :details
# The status code, which should be an enum value of google.rpc.Code.
# Corresponds to the JSON property `code`
# @return [Fixnum]
attr_accessor :code
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@message = args[:message] if args.key?(:message)
@details = args[:details] if args.key?(:details)
@code = args[:code] if args.key?(:code)
end
end
# Results from Read or
# ExecuteSql.
class ResultSet
include Google::Apis::Core::Hashable
# Additional statistics about a ResultSet or PartialResultSet.
# Corresponds to the JSON property `stats`
# @return [Google::Apis::SpannerV1::ResultSetStats]
attr_accessor :stats
# Each element in `rows` is a row whose format is defined by
# metadata.row_type. The ith element
# in each row matches the ith field in
# metadata.row_type. Elements are
# encoded based on type as described
# here.
# Corresponds to the JSON property `rows`
# @return [Array<Array<Object>>]
attr_accessor :rows
# Metadata about a ResultSet or PartialResultSet.
# Corresponds to the JSON property `metadata`
# @return [Google::Apis::SpannerV1::ResultSetMetadata]
attr_accessor :metadata
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@stats = args[:stats] if args.key?(:stats)
@rows = args[:rows] if args.key?(:rows)
@metadata = args[:metadata] if args.key?(:metadata)
end
end
# Enqueues the given DDL statements to be applied, in order but not
# necessarily all at once, to the database schema at some point (or
# points) in the future. The server checks that the statements
# are executable (syntactically valid, name tables that exist, etc.)
# before enqueueing them, but they may still fail upon
# later execution (e.g., if a statement from another batch of
# statements is applied first and it conflicts in some way, or if
# there is some data-related problem like a `NULL` value in a column to
# which `NOT NULL` would be added). If a statement fails, all
# subsequent statements in the batch are automatically cancelled.
# Each batch of statements is assigned a name which can be used with
# the Operations API to monitor
# progress. See the
# operation_id field for more
# details.
class UpdateDatabaseDdlRequest
include Google::Apis::Core::Hashable
# DDL statements to be applied to the database.
# Corresponds to the JSON property `statements`
# @return [Array<String>]
attr_accessor :statements
# If empty, the new update request is assigned an
# automatically-generated operation ID. Otherwise, `operation_id`
# is used to construct the name of the resulting
# Operation.
# Specifying an explicit operation ID simplifies determining
# whether the statements were executed in the event that the
# UpdateDatabaseDdl call is replayed,
# or the return value is otherwise lost: the database and
# `operation_id` fields can be combined to form the
# name of the resulting
# longrunning.Operation: `<database>/operations/<operation_id>`.
# `operation_id` should be unique within the database, and must be
# a valid identifier: `a-z*`. Note that
# automatically-generated operation IDs always begin with an
# underscore. If the named operation already exists,
# UpdateDatabaseDdl returns
# `ALREADY_EXISTS`.
# Corresponds to the JSON property `operationId`
# @return [String]
attr_accessor :operation_id
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@statements = args[:statements] if args.key?(:statements)
@operation_id = args[:operation_id] if args.key?(:operation_id)
end
end
# Associates `members` with a `role`.
class Binding
include Google::Apis::Core::Hashable
# Specifies the identities requesting access for a Cloud Platform resource.
# `members` can have the following values:
# * `allUsers`: A special identifier that represents anyone who is
# on the internet; with or without a Google account.
# * `allAuthenticatedUsers`: A special identifier that represents anyone
# who is authenticated with a Google account or a service account.
# * `user:`emailid``: An email address that represents a specific Google
# account. For example, `alice@gmail.com` or `joe@example.com`.
# * `serviceAccount:`emailid``: An email address that represents a service
# account. For example, `my-other-app@appspot.gserviceaccount.com`.
# * `group:`emailid``: An email address that represents a Google group.
# For example, `admins@example.com`.
# * `domain:`domain``: A Google Apps domain name that represents all the
# users of that domain. For example, `google.com` or `example.com`.
# Corresponds to the JSON property `members`
# @return [Array<String>]
attr_accessor :members
# Role that is assigned to `members`.
# For example, `roles/viewer`, `roles/editor`, or `roles/owner`.
# Required
# Corresponds to the JSON property `role`
# @return [String]
attr_accessor :role
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@members = args[:members] if args.key?(:members)
@role = args[:role] if args.key?(:role)
end
end
# Partial results from a streaming read or SQL query. Streaming reads and
# SQL queries better tolerate large result sets, large rows, and large
# values, but are a little trickier to consume.
class PartialResultSet
include Google::Apis::Core::Hashable
# If true, then the final value in values is chunked, and must
# be combined with more values from subsequent `PartialResultSet`s
# to obtain a complete field value.
# Corresponds to the JSON property `chunkedValue`
# @return [Boolean]
attr_accessor :chunked_value
alias_method :chunked_value?, :chunked_value
# Metadata about a ResultSet or PartialResultSet.
# Corresponds to the JSON property `metadata`
# @return [Google::Apis::SpannerV1::ResultSetMetadata]
attr_accessor :metadata
# A streamed result set consists of a stream of values, which might
# be split into many `PartialResultSet` messages to accommodate
# large rows and/or large values. Every N complete values defines a
# row, where N is equal to the number of entries in
# metadata.row_type.fields.
# Most values are encoded based on type as described
# here.
# It is possible that the last value in values is "chunked",
# meaning that the rest of the value is sent in subsequent
# `PartialResultSet`(s). This is denoted by the chunked_value
# field. Two or more chunked values can be merged to form a
# complete value as follows:
# * `bool/number/null`: cannot be chunked
# * `string`: concatenate the strings
# * `list`: concatenate the lists. If the last element in a list is a
# `string`, `list`, or `object`, merge it with the first element in
# the next list by applying these rules recursively.
# * `object`: concatenate the (field name, field value) pairs. If a
# field name is duplicated, then apply these rules recursively
# to merge the field values.
# Some examples of merging:
# # Strings are concatenated.
# "foo", "bar" => "foobar"
# # Lists of non-strings are concatenated.
# [2, 3], [4] => [2, 3, 4]
# # Lists are concatenated, but the last and first elements are merged
# # because they are strings.
# ["a", "b"], ["c", "d"] => ["a", "bc", "d"]
# # Lists are concatenated, but the last and first elements are merged
# # because they are lists. Recursively, the last and first elements
# # of the inner lists are merged because they are strings.
# ["a", ["b", "c"]], [["d"], "e"] => ["a", ["b", "cd"], "e"]
# # Non-overlapping object fields are combined.
# `"a": "1"`, `"b": "2"` => `"a": "1", "b": 2"`
# # Overlapping object fields are merged.
# `"a": "1"`, `"a": "2"` => `"a": "12"`
# # Examples of merging objects containing lists of strings.
# `"a": ["1"]`, `"a": ["2"]` => `"a": ["12"]`
# For a more complete example, suppose a streaming SQL query is
# yielding a result set whose rows contain a single string
# field. The following `PartialResultSet`s might be yielded:
# `
# "metadata": ` ... `
# "values": ["Hello", "W"]
# "chunked_value": true
# "resume_token": "Af65..."
# `
# `
# "values": ["orl"]
# "chunked_value": true
# "resume_token": "Bqp2..."
# `
# `
# "values": ["d"]
# "resume_token": "Zx1B..."
# `
# This sequence of `PartialResultSet`s encodes two rows, one
# containing the field value `"Hello"`, and a second containing the
# field value `"World" = "W" + "orl" + "d"`.
# Corresponds to the JSON property `values`
# @return [Array<Object>]
attr_accessor :values
# Streaming calls might be interrupted for a variety of reasons, such
# as TCP connection loss. If this occurs, the stream of results can
# be resumed by re-sending the original request and including
# `resume_token`. Note that executing any other transaction in the
# same session invalidates the token.
# Corresponds to the JSON property `resumeToken`
# NOTE: Values are automatically base64 encoded/decoded in the client library.
# @return [String]
attr_accessor :resume_token
# Additional statistics about a ResultSet or PartialResultSet.
# Corresponds to the JSON property `stats`
# @return [Google::Apis::SpannerV1::ResultSetStats]
attr_accessor :stats
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@chunked_value = args[:chunked_value] if args.key?(:chunked_value)
@metadata = args[:metadata] if args.key?(:metadata)
@values = args[:values] if args.key?(:values)
@resume_token = args[:resume_token] if args.key?(:resume_token)
@stats = args[:stats] if args.key?(:stats)
end
end
# Metadata type for the operation returned by
# UpdateInstance.
class UpdateInstanceMetadata
include Google::Apis::Core::Hashable
# The time at which this operation was cancelled. If set, this operation is
# in the process of undoing itself (which is guaranteed to succeed) and
# cannot be cancelled again.
# Corresponds to the JSON property `cancelTime`
# @return [String]
attr_accessor :cancel_time
# The time at which this operation failed or was completed successfully.
# Corresponds to the JSON property `endTime`
# @return [String]
attr_accessor :end_time
# An isolated set of Cloud Spanner resources on which databases can be hosted.
# Corresponds to the JSON property `instance`
# @return [Google::Apis::SpannerV1::Instance]
attr_accessor :instance
# The time at which UpdateInstance
# request was received.
# Corresponds to the JSON property `startTime`
# @return [String]
attr_accessor :start_time
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@cancel_time = args[:cancel_time] if args.key?(:cancel_time)
@end_time = args[:end_time] if args.key?(:end_time)
@instance = args[:instance] if args.key?(:instance)
@start_time = args[:start_time] if args.key?(:start_time)
end
end
# The response message for Operations.ListOperations.
class ListOperationsResponse
include Google::Apis::Core::Hashable
# The standard List next-page token.
# Corresponds to the JSON property `nextPageToken`
# @return [String]
attr_accessor :next_page_token
# A list of operations that matches the specified filter in the request.
# Corresponds to the JSON property `operations`
# @return [Array<Google::Apis::SpannerV1::Operation>]
attr_accessor :operations
def initialize(**args)
update!(**args)
end
# Update properties of this object
def update!(**args)
@next_page_token = args[:next_page_token] if args.key?(:next_page_token)
@operations = args[:operations] if args.key?(:operations)
end
end
end
end
end