google-api-ruby-client/examples/prediction/prediction.rb

228 lines
7.5 KiB
Ruby

#!/usr/bin/ruby1.8
# -*- coding: utf-8 -*-
# Copyright:: Copyright 2011 Google Inc.
# License:: All Rights Reserved.
# Original Author:: Bob Aman, Winton Davies, Robert Kaplow
# Maintainer:: Robert Kaplow (mailto:rkaplow@google.com)
require 'rubygems'
require 'sinatra'
require 'datamapper'
require 'google/api_client'
require 'yaml'
use Rack::Session::Pool, :expire_after => 86400 # 1 day
# Set up our token store
DataMapper.setup(:default, 'sqlite::memory:')
class TokenPair
include DataMapper::Resource
property :id, Serial
property :refresh_token, String
property :access_token, String
property :expires_in, Integer
property :issued_at, Integer
def update_token!(object)
self.refresh_token = object.refresh_token
self.access_token = object.access_token
self.expires_in = object.expires_in
self.issued_at = object.issued_at
end
def to_hash
return {
:refresh_token => refresh_token,
:access_token => access_token,
:expires_in => expires_in,
:issued_at => Time.at(issued_at)
}
end
end
TokenPair.auto_migrate!
before do
# FILL IN THIS SECTION
# This will work if your yaml file is stored as ./google-api.yaml
# ------------------------
oauth_yaml = YAML.load_file('.google-api.yaml')
@client = Google::APIClient.new
@client.authorization.client_id = oauth_yaml["client_id"]
@client.authorization.client_secret = oauth_yaml["client_secret"]
@client.authorization.scope = oauth_yaml["scope"]
@client.authorization.refresh_token = oauth_yaml["refresh_token"]
@client.authorization.access_token = oauth_yaml["access_token"]
# -----------------------
@client.authorization.redirect_uri = to('/oauth2callback')
# Workaround for now as expires_in may be nil, but when converted to int it becomes 0.
@client.authorization.expires_in = 1800 if @client.authorization.expires_in.to_i == 0
if session[:token_id]
# Load the access token here if it's available
token_pair = TokenPair.get(session[:token_id])
@client.authorization.update_token!(token_pair.to_hash)
end
if @client.authorization.refresh_token && @client.authorization.expired?
@client.authorization.fetch_access_token!
end
@prediction = @client.discovered_api('prediction', 'v1.3')
unless @client.authorization.access_token || request.path_info =~ /^\/oauth2/
redirect to('/oauth2authorize')
end
end
get '/oauth2authorize' do
redirect @client.authorization.authorization_uri.to_s, 303
end
get '/oauth2callback' do
@client.authorization.fetch_access_token!
# Persist the token here
token_pair = if session[:token_id]
TokenPair.get(session[:token_id])
else
TokenPair.new
end
token_pair.update_token!(@client.authorization)
token_pair.save()
session[:token_id] = token_pair.id
redirect to('/')
end
get '/' do
# FILL IN DATAFILE:
# ----------------------------------------
datafile = "BUCKET/OBJECT"
# ----------------------------------------
# Train a predictive model.
train(datafile)
# Check to make sure the training has completed.
if (is_done?(datafile))
# Do a prediction.
# FILL IN DESIRED INPUT:
# -------------------------------------------------------------------------------
# Note, the input features should match the features of the dataset.
prediction,score = get_prediction(datafile, ["Alice noticed with some surprise."])
# -------------------------------------------------------------------------------
# We currently just dump the results to output, but you can display them on the page if desired.
puts prediction
puts score
end
end
##
# Trains a predictive model.
#
# @param [String] filename The name of the file in Google Storage. NOTE: this do *not*
# include the gs:// part. If the Google Storage path is gs://bucket/object,
# then the correct string is "bucket/object"
def train(datafile)
input = "{\"id\" : \"#{datafile}\"}"
puts "training input: #{input}"
result = @client.execute(:api_method => @prediction.training.insert,
:merged_body => input,
:headers => {'Content-Type' => 'application/json'}
)
status, headers, body = result.response
end
##
# Returns the current training status
#
# @param [String] filename The name of the file in Google Storage. NOTE: this do *not*
# include the gs:// part. If the Google Storage path is gs://bucket/object,
# then the correct string is "bucket/object"
# @return [Integer] status The HTTP status code of the training job.
def get_training_status(datafile)
result = @client.execute(:api_method => @prediction.training.get,
:parameters => {'data' => datafile})
status, headers, body = result.response
return status
end
##
# Checks the training status until a model exists (will loop forever).
#
# @param [String] filename The name of the file in Google Storage. NOTE: this do *not*
# include the gs:// part. If the Google Storage path is gs://bucket/object,
# then the correct string is "bucket/object"
# @return [Bool] exists True if model exists and can be used for predictions.
def is_done?(datafile)
status = get_training_status(datafile)
# We use an exponential backoff approach here.
test_counter = 0
while test_counter < 10 do
puts "Attempting to check model #{datafile} - Status: #{status} "
return true if status == 200
sleep 5 * (test_counter + 1)
status = get_training_status(datafile)
test_counter += 1
end
return false
end
##
# Returns the prediction and most most likely class score if categorization.
#
# @param [String] filename The name of the file in Google Storage. NOTE: this do *not*
# include the gs:// part. If the Google Storage path is gs://bucket/object,
# then the correct string is "bucket/object"
# @param [List] input_features A list of input features.
#
# @return [String or Double] prediction The returned prediction, String if categorization,
# Double if regression
# @return [Double] trueclass_score The numeric score of the most likely label. (Categorical only).
def get_prediction(datafile,input_features)
# We take the input features and put it in the right input (json) format.
input="{\"input\" : { \"csvInstance\" : #{input_features}}}"
puts "Prediction Input: #{input}"
result = @client.execute(:api_method => @prediction.training.predict,
:parameters => {'data' => datafile},
:merged_body => input,
:headers => {'Content-Type' => 'application/json'})
status, headers, body = result.response
prediction_data = result.data
puts status
puts body
puts prediction_data
# Categorical
if prediction_data["outputLabel"] != nil
# Pull the most likely label.
prediction = prediction_data["outputLabel"]
# Pull the class probabilities.
probs = prediction_data["outputMulti"]
puts probs
# Verify we are getting a value result.
puts ["ERROR", input_features].join("\t") if probs.nil?
return "error", -1.0 if probs.nil?
# Extract the score for the most likely class.
trueclass_score = probs.select{|hash|
hash["label"] == prediction
}[0]["score"]
# Regression.
else
prediction = prediction_data["outputValue"]
# Class core unused.
trueclass_score = -1
end
puts [prediction,trueclass_score,input_features].join("\t")
return prediction,trueclass_score
end