404 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
			
		
		
	
	
			404 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
| // Copyright 2011 The Snappy-Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package snappy
 | |
| 
 | |
| import (
 | |
| 	"encoding/binary"
 | |
| 	"errors"
 | |
| 	"io"
 | |
| )
 | |
| 
 | |
| // maxOffset limits how far copy back-references can go, the same as the C++
 | |
| // code.
 | |
| const maxOffset = 1 << 15
 | |
| 
 | |
| // emitLiteral writes a literal chunk and returns the number of bytes written.
 | |
| func emitLiteral(dst, lit []byte) int {
 | |
| 	i, n := 0, uint(len(lit)-1)
 | |
| 	switch {
 | |
| 	case n < 60:
 | |
| 		dst[0] = uint8(n)<<2 | tagLiteral
 | |
| 		i = 1
 | |
| 	case n < 1<<8:
 | |
| 		dst[0] = 60<<2 | tagLiteral
 | |
| 		dst[1] = uint8(n)
 | |
| 		i = 2
 | |
| 	case n < 1<<16:
 | |
| 		dst[0] = 61<<2 | tagLiteral
 | |
| 		dst[1] = uint8(n)
 | |
| 		dst[2] = uint8(n >> 8)
 | |
| 		i = 3
 | |
| 	case n < 1<<24:
 | |
| 		dst[0] = 62<<2 | tagLiteral
 | |
| 		dst[1] = uint8(n)
 | |
| 		dst[2] = uint8(n >> 8)
 | |
| 		dst[3] = uint8(n >> 16)
 | |
| 		i = 4
 | |
| 	case int64(n) < 1<<32:
 | |
| 		dst[0] = 63<<2 | tagLiteral
 | |
| 		dst[1] = uint8(n)
 | |
| 		dst[2] = uint8(n >> 8)
 | |
| 		dst[3] = uint8(n >> 16)
 | |
| 		dst[4] = uint8(n >> 24)
 | |
| 		i = 5
 | |
| 	default:
 | |
| 		panic("snappy: source buffer is too long")
 | |
| 	}
 | |
| 	if copy(dst[i:], lit) != len(lit) {
 | |
| 		panic("snappy: destination buffer is too short")
 | |
| 	}
 | |
| 	return i + len(lit)
 | |
| }
 | |
| 
 | |
| // emitCopy writes a copy chunk and returns the number of bytes written.
 | |
| func emitCopy(dst []byte, offset, length int32) int {
 | |
| 	i := 0
 | |
| 	for length > 0 {
 | |
| 		x := length - 4
 | |
| 		if 0 <= x && x < 1<<3 && offset < 1<<11 {
 | |
| 			dst[i+0] = uint8(offset>>8)&0x07<<5 | uint8(x)<<2 | tagCopy1
 | |
| 			dst[i+1] = uint8(offset)
 | |
| 			i += 2
 | |
| 			break
 | |
| 		}
 | |
| 
 | |
| 		x = length
 | |
| 		if x > 1<<6 {
 | |
| 			x = 1 << 6
 | |
| 		}
 | |
| 		dst[i+0] = uint8(x-1)<<2 | tagCopy2
 | |
| 		dst[i+1] = uint8(offset)
 | |
| 		dst[i+2] = uint8(offset >> 8)
 | |
| 		i += 3
 | |
| 		length -= x
 | |
| 	}
 | |
| 	return i
 | |
| }
 | |
| 
 | |
| // Encode returns the encoded form of src. The returned slice may be a sub-
 | |
| // slice of dst if dst was large enough to hold the entire encoded block.
 | |
| // Otherwise, a newly allocated slice will be returned.
 | |
| //
 | |
| // It is valid to pass a nil dst.
 | |
| func Encode(dst, src []byte) []byte {
 | |
| 	if n := MaxEncodedLen(len(src)); n < 0 {
 | |
| 		panic(ErrTooLarge)
 | |
| 	} else if len(dst) < n {
 | |
| 		dst = make([]byte, n)
 | |
| 	}
 | |
| 
 | |
| 	// The block starts with the varint-encoded length of the decompressed bytes.
 | |
| 	d := binary.PutUvarint(dst, uint64(len(src)))
 | |
| 
 | |
| 	for len(src) > 0 {
 | |
| 		p := src
 | |
| 		src = nil
 | |
| 		if len(p) > maxBlockSize {
 | |
| 			p, src = p[:maxBlockSize], p[maxBlockSize:]
 | |
| 		}
 | |
| 		d += encodeBlock(dst[d:], p)
 | |
| 	}
 | |
| 	return dst[:d]
 | |
| }
 | |
| 
 | |
| // encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
 | |
| // assumes that the varint-encoded length of the decompressed bytes has already
 | |
| // been written.
 | |
| //
 | |
| // It also assumes that:
 | |
| //	len(dst) >= MaxEncodedLen(len(src)) &&
 | |
| // 	0 < len(src) && len(src) <= maxBlockSize
 | |
| func encodeBlock(dst, src []byte) (d int) {
 | |
| 	// Return early if src is short.
 | |
| 	if len(src) <= 4 {
 | |
| 		return emitLiteral(dst, src)
 | |
| 	}
 | |
| 
 | |
| 	// Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
 | |
| 	const maxTableSize = 1 << 14
 | |
| 	shift, tableSize := uint(32-8), 1<<8
 | |
| 	for tableSize < maxTableSize && tableSize < len(src) {
 | |
| 		shift--
 | |
| 		tableSize *= 2
 | |
| 	}
 | |
| 	var table [maxTableSize]int32
 | |
| 
 | |
| 	// Iterate over the source bytes.
 | |
| 	var (
 | |
| 		s   int32 // The iterator position.
 | |
| 		t   int32 // The last position with the same hash as s.
 | |
| 		lit int32 // The start position of any pending literal bytes.
 | |
| 
 | |
| 		// Copied from the C++ snappy implementation:
 | |
| 		//
 | |
| 		// Heuristic match skipping: If 32 bytes are scanned with no matches
 | |
| 		// found, start looking only at every other byte. If 32 more bytes are
 | |
| 		// scanned, look at every third byte, etc.. When a match is found,
 | |
| 		// immediately go back to looking at every byte. This is a small loss
 | |
| 		// (~5% performance, ~0.1% density) for compressible data due to more
 | |
| 		// bookkeeping, but for non-compressible data (such as JPEG) it's a
 | |
| 		// huge win since the compressor quickly "realizes" the data is
 | |
| 		// incompressible and doesn't bother looking for matches everywhere.
 | |
| 		//
 | |
| 		// The "skip" variable keeps track of how many bytes there are since
 | |
| 		// the last match; dividing it by 32 (ie. right-shifting by five) gives
 | |
| 		// the number of bytes to move ahead for each iteration.
 | |
| 		skip uint32 = 32
 | |
| 	)
 | |
| 	for uint32(s+3) < uint32(len(src)) { // The uint32 conversions catch overflow from the +3.
 | |
| 		// Update the hash table.
 | |
| 		b0, b1, b2, b3 := src[s], src[s+1], src[s+2], src[s+3]
 | |
| 		h := uint32(b0) | uint32(b1)<<8 | uint32(b2)<<16 | uint32(b3)<<24
 | |
| 		p := &table[(h*0x1e35a7bd)>>shift]
 | |
| 		// We need to to store values in [-1, inf) in table. To save
 | |
| 		// some initialization time, (re)use the table's zero value
 | |
| 		// and shift the values against this zero: add 1 on writes,
 | |
| 		// subtract 1 on reads.
 | |
| 		t, *p = *p-1, s+1
 | |
| 		// If t is invalid or src[s:s+4] differs from src[t:t+4], accumulate a literal byte.
 | |
| 		if t < 0 || s-t >= maxOffset || b0 != src[t] || b1 != src[t+1] || b2 != src[t+2] || b3 != src[t+3] {
 | |
| 			s += int32(skip >> 5)
 | |
| 			skip++
 | |
| 			continue
 | |
| 		}
 | |
| 		skip = 32
 | |
| 		// Otherwise, we have a match. First, emit any pending literal bytes.
 | |
| 		if lit != s {
 | |
| 			d += emitLiteral(dst[d:], src[lit:s])
 | |
| 		}
 | |
| 		// Extend the match to be as long as possible.
 | |
| 		s0 := s
 | |
| 		s, t = s+4, t+4
 | |
| 		for int(s) < len(src) && src[s] == src[t] {
 | |
| 			s++
 | |
| 			t++
 | |
| 		}
 | |
| 		// Emit the copied bytes.
 | |
| 		d += emitCopy(dst[d:], s-t, s-s0)
 | |
| 		lit = s
 | |
| 	}
 | |
| 
 | |
| 	// Emit any final pending literal bytes and return.
 | |
| 	if int(lit) != len(src) {
 | |
| 		d += emitLiteral(dst[d:], src[lit:])
 | |
| 	}
 | |
| 	return d
 | |
| }
 | |
| 
 | |
| // MaxEncodedLen returns the maximum length of a snappy block, given its
 | |
| // uncompressed length.
 | |
| //
 | |
| // It will return a negative value if srcLen is too large to encode.
 | |
| func MaxEncodedLen(srcLen int) int {
 | |
| 	n := uint64(srcLen)
 | |
| 	if n > 0xffffffff {
 | |
| 		return -1
 | |
| 	}
 | |
| 	// Compressed data can be defined as:
 | |
| 	//    compressed := item* literal*
 | |
| 	//    item       := literal* copy
 | |
| 	//
 | |
| 	// The trailing literal sequence has a space blowup of at most 62/60
 | |
| 	// since a literal of length 60 needs one tag byte + one extra byte
 | |
| 	// for length information.
 | |
| 	//
 | |
| 	// Item blowup is trickier to measure. Suppose the "copy" op copies
 | |
| 	// 4 bytes of data. Because of a special check in the encoding code,
 | |
| 	// we produce a 4-byte copy only if the offset is < 65536. Therefore
 | |
| 	// the copy op takes 3 bytes to encode, and this type of item leads
 | |
| 	// to at most the 62/60 blowup for representing literals.
 | |
| 	//
 | |
| 	// Suppose the "copy" op copies 5 bytes of data. If the offset is big
 | |
| 	// enough, it will take 5 bytes to encode the copy op. Therefore the
 | |
| 	// worst case here is a one-byte literal followed by a five-byte copy.
 | |
| 	// That is, 6 bytes of input turn into 7 bytes of "compressed" data.
 | |
| 	//
 | |
| 	// This last factor dominates the blowup, so the final estimate is:
 | |
| 	n = 32 + n + n/6
 | |
| 	if n > 0xffffffff {
 | |
| 		return -1
 | |
| 	}
 | |
| 	return int(n)
 | |
| }
 | |
| 
 | |
| var errClosed = errors.New("snappy: Writer is closed")
 | |
| 
 | |
| // NewWriter returns a new Writer that compresses to w.
 | |
| //
 | |
| // The Writer returned does not buffer writes. There is no need to Flush or
 | |
| // Close such a Writer.
 | |
| //
 | |
| // Deprecated: the Writer returned is not suitable for many small writes, only
 | |
| // for few large writes. Use NewBufferedWriter instead, which is efficient
 | |
| // regardless of the frequency and shape of the writes, and remember to Close
 | |
| // that Writer when done.
 | |
| func NewWriter(w io.Writer) *Writer {
 | |
| 	return &Writer{
 | |
| 		w:    w,
 | |
| 		obuf: make([]byte, obufLen),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // NewBufferedWriter returns a new Writer that compresses to w, using the
 | |
| // framing format described at
 | |
| // https://github.com/google/snappy/blob/master/framing_format.txt
 | |
| //
 | |
| // The Writer returned buffers writes. Users must call Close to guarantee all
 | |
| // data has been forwarded to the underlying io.Writer. They may also call
 | |
| // Flush zero or more times before calling Close.
 | |
| func NewBufferedWriter(w io.Writer) *Writer {
 | |
| 	return &Writer{
 | |
| 		w:    w,
 | |
| 		ibuf: make([]byte, 0, maxBlockSize),
 | |
| 		obuf: make([]byte, obufLen),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Writer is an io.Writer than can write Snappy-compressed bytes.
 | |
| type Writer struct {
 | |
| 	w   io.Writer
 | |
| 	err error
 | |
| 
 | |
| 	// ibuf is a buffer for the incoming (uncompressed) bytes.
 | |
| 	//
 | |
| 	// Its use is optional. For backwards compatibility, Writers created by the
 | |
| 	// NewWriter function have ibuf == nil, do not buffer incoming bytes, and
 | |
| 	// therefore do not need to be Flush'ed or Close'd.
 | |
| 	ibuf []byte
 | |
| 
 | |
| 	// obuf is a buffer for the outgoing (compressed) bytes.
 | |
| 	obuf []byte
 | |
| 
 | |
| 	// wroteStreamHeader is whether we have written the stream header.
 | |
| 	wroteStreamHeader bool
 | |
| }
 | |
| 
 | |
| // Reset discards the writer's state and switches the Snappy writer to write to
 | |
| // w. This permits reusing a Writer rather than allocating a new one.
 | |
| func (w *Writer) Reset(writer io.Writer) {
 | |
| 	w.w = writer
 | |
| 	w.err = nil
 | |
| 	if w.ibuf != nil {
 | |
| 		w.ibuf = w.ibuf[:0]
 | |
| 	}
 | |
| 	w.wroteStreamHeader = false
 | |
| }
 | |
| 
 | |
| // Write satisfies the io.Writer interface.
 | |
| func (w *Writer) Write(p []byte) (nRet int, errRet error) {
 | |
| 	if w.ibuf == nil {
 | |
| 		// Do not buffer incoming bytes. This does not perform or compress well
 | |
| 		// if the caller of Writer.Write writes many small slices. This
 | |
| 		// behavior is therefore deprecated, but still supported for backwards
 | |
| 		// compatibility with code that doesn't explicitly Flush or Close.
 | |
| 		return w.write(p)
 | |
| 	}
 | |
| 
 | |
| 	// The remainder of this method is based on bufio.Writer.Write from the
 | |
| 	// standard library.
 | |
| 
 | |
| 	for len(p) > (cap(w.ibuf)-len(w.ibuf)) && w.err == nil {
 | |
| 		var n int
 | |
| 		if len(w.ibuf) == 0 {
 | |
| 			// Large write, empty buffer.
 | |
| 			// Write directly from p to avoid copy.
 | |
| 			n, _ = w.write(p)
 | |
| 		} else {
 | |
| 			n = copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
 | |
| 			w.ibuf = w.ibuf[:len(w.ibuf)+n]
 | |
| 			w.Flush()
 | |
| 		}
 | |
| 		nRet += n
 | |
| 		p = p[n:]
 | |
| 	}
 | |
| 	if w.err != nil {
 | |
| 		return nRet, w.err
 | |
| 	}
 | |
| 	n := copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
 | |
| 	w.ibuf = w.ibuf[:len(w.ibuf)+n]
 | |
| 	nRet += n
 | |
| 	return nRet, nil
 | |
| }
 | |
| 
 | |
| func (w *Writer) write(p []byte) (nRet int, errRet error) {
 | |
| 	if w.err != nil {
 | |
| 		return 0, w.err
 | |
| 	}
 | |
| 	for len(p) > 0 {
 | |
| 		obufStart := len(magicChunk)
 | |
| 		if !w.wroteStreamHeader {
 | |
| 			w.wroteStreamHeader = true
 | |
| 			copy(w.obuf, magicChunk)
 | |
| 			obufStart = 0
 | |
| 		}
 | |
| 
 | |
| 		var uncompressed []byte
 | |
| 		if len(p) > maxBlockSize {
 | |
| 			uncompressed, p = p[:maxBlockSize], p[maxBlockSize:]
 | |
| 		} else {
 | |
| 			uncompressed, p = p, nil
 | |
| 		}
 | |
| 		checksum := crc(uncompressed)
 | |
| 
 | |
| 		// Compress the buffer, discarding the result if the improvement
 | |
| 		// isn't at least 12.5%.
 | |
| 		compressed := Encode(w.obuf[obufHeaderLen:], uncompressed)
 | |
| 		chunkType := uint8(chunkTypeCompressedData)
 | |
| 		chunkLen := 4 + len(compressed)
 | |
| 		obufEnd := obufHeaderLen + len(compressed)
 | |
| 		if len(compressed) >= len(uncompressed)-len(uncompressed)/8 {
 | |
| 			chunkType = chunkTypeUncompressedData
 | |
| 			chunkLen = 4 + len(uncompressed)
 | |
| 			obufEnd = obufHeaderLen
 | |
| 		}
 | |
| 
 | |
| 		// Fill in the per-chunk header that comes before the body.
 | |
| 		w.obuf[len(magicChunk)+0] = chunkType
 | |
| 		w.obuf[len(magicChunk)+1] = uint8(chunkLen >> 0)
 | |
| 		w.obuf[len(magicChunk)+2] = uint8(chunkLen >> 8)
 | |
| 		w.obuf[len(magicChunk)+3] = uint8(chunkLen >> 16)
 | |
| 		w.obuf[len(magicChunk)+4] = uint8(checksum >> 0)
 | |
| 		w.obuf[len(magicChunk)+5] = uint8(checksum >> 8)
 | |
| 		w.obuf[len(magicChunk)+6] = uint8(checksum >> 16)
 | |
| 		w.obuf[len(magicChunk)+7] = uint8(checksum >> 24)
 | |
| 
 | |
| 		if _, err := w.w.Write(w.obuf[obufStart:obufEnd]); err != nil {
 | |
| 			w.err = err
 | |
| 			return nRet, err
 | |
| 		}
 | |
| 		if chunkType == chunkTypeUncompressedData {
 | |
| 			if _, err := w.w.Write(uncompressed); err != nil {
 | |
| 				w.err = err
 | |
| 				return nRet, err
 | |
| 			}
 | |
| 		}
 | |
| 		nRet += len(uncompressed)
 | |
| 	}
 | |
| 	return nRet, nil
 | |
| }
 | |
| 
 | |
| // Flush flushes the Writer to its underlying io.Writer.
 | |
| func (w *Writer) Flush() error {
 | |
| 	if w.err != nil {
 | |
| 		return w.err
 | |
| 	}
 | |
| 	if len(w.ibuf) == 0 {
 | |
| 		return nil
 | |
| 	}
 | |
| 	w.write(w.ibuf)
 | |
| 	w.ibuf = w.ibuf[:0]
 | |
| 	return w.err
 | |
| }
 | |
| 
 | |
| // Close calls Flush and then closes the Writer.
 | |
| func (w *Writer) Close() error {
 | |
| 	w.Flush()
 | |
| 	ret := w.err
 | |
| 	if w.err == nil {
 | |
| 		w.err = errClosed
 | |
| 	}
 | |
| 	return ret
 | |
| }
 |