Upon further investigation this change turned out to be useless. Nokogiri/libxml
does not allow the use of long axes without tests, instead it ends up
lexing/parsing such a value as a simple node test.
This reverts commit f699b0d097.
An axes such as "." is the same as "self::node()". To simplify things on
parser/evaluator level we'll emit the corresponding tokens for a "node()"
function call for these axes.
Instead of using a raw Hash Oga now uses the XML::Attribute class for storing
information about element attributes.
Attributes are stored as an Array of XML::Attribute instances. This allows the
attributes to be more easily modified. If they were stored as a Hash you'd not
only have to update the attributes themselves but also the Hash that contains
them.
While using an Array has a slight runtime cost in most cases the amount of
attributes is small enough that this doesn't really pose a problem. If webscale
performance is desired at some point in the future Oga could most likely cache
the lookup of an attribute. This however is something for the future.
Instead of keeping track of an internal state in @stack and @context the various
processing methods now take the context as an extra argument and return the
nodes they produced. This makes it easier to recursively call certain methods, a
requirement for processing XPath axes (e.g. the "ancestor" axis).
The AST has been simplified by adjusting the way (path) nodes are nested.
Operators now also use `paths` instead of `expression` to allow for expressions
such as `/A or /B`. Sadly this introduces quite a bunch of conflicts in the
parser but we'll deal with those later if needed.
Come to think of it it might actually be easier to implement the evaluator as
an actual VM. That is, instead of directly running on the AST it runs on some
flavour of bytecode. Alternatively it runs directly on the AST but behaves more
like a (stack based) VM. This would most likely be easier than passing a cursor
to every node processing method.
This method can be used to retrieve the text of the given node only. In other
words, unlike Element#text it does not contain the text of any child nodes.
This method uses a loop to traverse upwards the DOM tree in order to find the
root document/element. While this might have an impact on performance I don't
expect Oga itself to call this method very often. The benefit is that Node
instances don't require users to manually pass the top level document as an
argument.
The combination of iterating over an array and removing values from it results
in not all elements being removed. For example:
numbers = [10, 20, 30]
numbers.each do |num|
numbers.delete(num)
end
numbers # => [20]
As a result of this the NodeSet#remove method uses two iterations:
1. One iteration to retrieve all NodeSet instances to remove nodes from.
2. One iteration to actually remove the nodes.
For the second iteration we iterate over the node sets and then over the nodes.
This ensures that we always remove all nodes instead of leaving some behind.
The documentation still leaves a lot to be desired and so does the API. There
also appears to be a problem where NodeSet#remove doesn't properly remove all
nodes from a set. Outside of that we're making slow progress towards a proper
DOM API.
Instead the various nodes can use NodeSet#index (aka Array#index) instead. This
has a slight performance overhead on very large (millions) of nodes but should
be fine in most other cases.
The previous commit didn't fully change the operator precedence according to
the XPath 1.0 specification. Also thanks to @whitequark for clearing up a few
things about Racc's operator precedence system.
Using IO/StringIO objects one can parse large XML files without first having to
read the entire file into memory. This can potentially save a lot of memory at
the cost of a slightly slower runtime.
For IO like instances the lexer will consume the input line by line. If a
String is given it's consumed as a whole instead. A small side effect of
reading the input line by line is that text such as "foo\nbar" will be lexed as
two tokens instead of one.
Fixes#19.
Instead of directly accessing the `data` instance variable the C/Java code now
uses the method `read_data`. This is part of one of the various steps required
to allow Oga to read data from IO like instances. It also means I can freely
change the name of the instance variable without also having to change the
C/Java code.
After discussing this with @headius I've decided to do this the manual way
anyway. Apparently the basic load service stuff is deprecated and not very
reliable.
While I've tried to keep Oga pure Ruby for as long as possible the performance
of Ragel's Ruby output was not worth the trouble. For example, lexing 10MB of
XML would take 5 to 6 seconds at least. Nokogiri on the other hand can parse
that same XML into a DOM document in about 300 miliseconds. Such a big
performance difference is not acceptable.
To work around this the XML/HTML lexer will be implemented in C for
MRI/Rubinius and Java for JRuby. For now there's only a C extension as I
haven't read up yet on the JRuby API. The end goal is to provide some sort of
Ragel "template" that can be used to generate the corresponding C/Java
extension code. This would remove the need of duplicating the grammar and
associated code.
The native extension setup is a hybrid between native and Ruby. The raw Ragel
stuff happens in C/Java while the actual logic of actions happens in Ruby. This
adds a small amount of overhead but makes it much easier to maintain the lexer.
Even with this extra overhead the performance is much better than pure Ruby.
The 10MB of XML mentioned above is lexed in about 600 miliseconds. In other
words, it's 10 times faster.
Instead of wrapping a predicate method around the ivar we'll just access it
directly. This reduces average lexing times in the big XML benchmark from 7,5
to ~7 seconds.
Instead of using instance variables for ts, te, etc we'll use local variables.
Grand wizard overloard @whitequark suggested that this would be quite a bit
faster, which turns out to be true. For example, the big XML lexer benchmark
would, prior to this commit, complete in about 9 - 9,3 seconds. With this
commit that hovers around 8,5 seconds.
This adds the ability to more easily act upon specific node types and nestings
when using the pull parsing API.
A basic example of this API looks like the following (only including relevant
code):
parser.parse do |node|
parser.on(:element, %w{people person}) do
people << {:name => nil, :age => nil}
end
parser.on(:text, %w{people person name}) do
people.last[:name] = node.text
end
parser.on(:text, %w{people person age}) do
people.last[:age] = node.text.to_i
end
end
This fixes#6.
Tracking the names of nested elements makes it a lot easier to do contextual
pull parsing. Without this it's impossible to know what context the parser is
in at a given moment.
For memory reasons the parser currently only tracks the element names. In the
future it might perhaps also track extra information to make parsing easier.
This parser extends the regular DOM parser but instead delegates certain nodes
to a block instead of building a DOM tree.
The API is a bit raw in its current form but I'll extend it and make it a bit
more user friendly in the following commits. In particular I want to make it
easier to figure out if a certain node is nested inside another node.
The AST layer is being removed because it doesn't really serve a useful
purpose. In particular when creating a streaming parser the AST nodes would
only introduce extra overhead.
As a result of this the parser will instead emit a DOM tree directly instead of
first emitting an AST.