64 lines
1.8 KiB
Ruby
64 lines
1.8 KiB
Ruby
module Bundler
|
|
class SimilarityDetector
|
|
SimilarityScore = Struct.new(:string, :distance)
|
|
|
|
# initialize with an array of words to be matched against
|
|
def initialize(corpus)
|
|
@corpus = corpus
|
|
end
|
|
|
|
# return an array of words similar to 'word' from the corpus
|
|
def similar_words(word, limit=3)
|
|
words_by_similarity = @corpus.map{|w| SimilarityScore.new(w, levenshtein_distance(word, w))}
|
|
words_by_similarity.select{|s| s.distance<=limit}.sort_by(&:distance).map(&:string)
|
|
end
|
|
|
|
# return the result of 'similar_words', concatenated into a list
|
|
# (eg "a, b, or c")
|
|
def similar_word_list(word, limit=3)
|
|
words = similar_words(word,limit)
|
|
if words.length==1
|
|
words[0]
|
|
elsif words.length>1
|
|
[words[0..-2].join(', '), words[-1]].join(' or ')
|
|
end
|
|
end
|
|
|
|
|
|
protected
|
|
# http://www.informit.com/articles/article.aspx?p=683059&seqNum=36
|
|
def levenshtein_distance(this, that, ins=2, del=2, sub=1)
|
|
# ins, del, sub are weighted costs
|
|
return nil if this.nil?
|
|
return nil if that.nil?
|
|
dm = [] # distance matrix
|
|
|
|
# Initialize first row values
|
|
dm[0] = (0..this.length).collect { |i| i * ins }
|
|
fill = [0] * (this.length - 1)
|
|
|
|
# Initialize first column values
|
|
for i in 1..that.length
|
|
dm[i] = [i * del, fill.flatten]
|
|
end
|
|
|
|
# populate matrix
|
|
for i in 1..that.length
|
|
for j in 1..this.length
|
|
# critical comparison
|
|
dm[i][j] = [
|
|
dm[i-1][j-1] +
|
|
(this[j-1] == that[i-1] ? 0 : sub),
|
|
dm[i][j-1] + ins,
|
|
dm[i-1][j] + del
|
|
].min
|
|
end
|
|
end
|
|
|
|
# The last value in matrix is the Levenshtein distance between the strings
|
|
dm[that.length][this.length]
|
|
end
|
|
|
|
end
|
|
end
|